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Abstract

This paper describes a robust approach for multimodal-
ity segmentation of the cardiac left ventricle. The method is
based on the concept of deformable models, but extended
with an enhanced and fast edge detection scheme that in-
cludes temporal information, and anatomical a priori in-
formation. The algorithm is implemented with a fast nu-
meric scheme for solving energy minimization, and effi-
cient filter nets for fast edge detection. This allows clin-
ically applicable time for a whole time resolved 3D car-
diac data set to be acheived on a standard desktop com-
puter. The algorithm is validated on images acquired us-
ing MRI Gradient echo, MRI (SSFP) images, and Cardiac
CT. The complete algorithm is implemented into a software
package freely available for non commercial research at
http://segment.heiberg.se.

1. Introduction

Segmentation of the left ventricle (LV) is of great clin-
ical interest since it allows to directly measure important
paramaters such as end-diastolic volume, ejection fraction,
and myocardial mass.

A broad spectrum of LV segmentation techniques for
different imaging modalities have been proposed, rang-
ing from simple techniques such as thresholding or region
growing, to boundary tracing [1], probabilistic or statisti-
cal models [2, 3] level-sets [4], deformable models/active
contours [5], and 3D active appearence models [6]. Active
appearance models have problems of coping with shape
variability outside the learning set, and it is computation-
ally expensive to have a learning set that includes all phases
of the cardiac cycle. Level set methods are rather compu-
tationally intensive for 3D+T data sets.

The presented method can easily be adopted to specific
imaging modalities, by a changing a few carefully selected

parameters. There are in practice two parameters govering
the forces on the deformable model, and two parameters
that control how the image intensity is treated.

2. Method

The basic idea behind the concept of deformable models
is that a geometrical representation of an object is allowed
to deform under an internal deformation energy (control-
ling the allowed shapes of the deforming object), and an
external potential energy field (from the input images or
user interaction). The deformable object is allowed to de-
form such as it fits the input data. Minimizing the energy
of the deformable objecto, leads to an Euler-Lagrange
equation which basically states or express that the inter-
nal and external forces must balance at equilibrium [7]. In
this paper deforming the object is based solely on solv-
ing a modified Euler-Lagrange equation that states that the
forces need only to balance along the normal vectorn̂ at
the model surface. The objective for modifying the Euler-
Lagrange equation is to avoid that the parametrization of
the deformable modelo influence the deforming forces.

2.1. Model Representation

The left ventricular model used in this approach is a
time-resolved mesh representation of the LV as an open
’cone’, sliced along the cone’s long axis with an equal
number of points in each slice. The number of points in
each slice is 80. The model is positioned with a single
mouse click in the approximate center of the LV. The im-
age intensity in that region is taken as an estimate of the
blood pool signal intensity. The segmentation is performed
first on the endocardial surface, and that surface is subse-
quently used to initialize the segmentation of the epicardial
surface.



2.2. Edge detection

A majority of the existing deformable model segmenta-
tion approaches use traditional edge detection techniques
such as Sobel filters or Monga-Deriche operators to pro-
duce an edge image. The basic idea in this paper is that,
by knowing the general shape, we can readily approximate
a priori the direction in which to anticipate the edge. This
allows us to use a direction-sensitive edge filter to find the
edges in only that particular direction, thereby avoiding
spurious edges in other directions. In Section 2.4 we show
how to include temporal information in the edge detection
at a very small computational cost to improve on this. The
idea of including temporal information is not new. It has
been previously been described in [1, 8, 9, 10].

We further separate the proposed edge detection scheme
in two variants, depending on the type of edge being ex-
pected. These edge types are denoted as ’concordant edge’
and ’discordant edge’. In the case of concordant edge the
deformable model is attracted to a black-white transition.
In the case of discordant edge the deformable model is at-
tracted to any border/edge regardless of the type of tran-
sition (black-white, or white-black). The input image is
processed with an edge detection scheme in four different
directionsφ (evenly distributed within half of the unit cir-
cle) producing four ’edge images’Eφ as:

concordant edge:Eφ = I ∗ fφ ∗ saφ ∗ sb⊥φ

discordant edge:Eφ =
∣∣∣I ∗ dφ ∗ saφ ∗ sb⊥φ

∣∣∣ ∗ dφ
(1)

whereI is the input image,∗ denotes image convolution,
fφ is a small edge-detecting filter (second order differenti-
ation),dφ is a derivate filter, andsaφ is a small directional
smoothing filter applied recursivelya times. All filters are
directionally sensitive, denoted by the indexφ, and ⊥φ

denotes a direction perpendicular to the directionφ. The
kernels aref = [−2 1 2], d = [ −1 0 1], s = [1 2 1]. The
directional sensitivity is implemented by rotating the ker-
nels. Note that different filters are applied to the two edge
types, it is not merely the absolute operator that differs.

2.3. Force Calculation

The forces are calculated on points/nodes on the model
o(l, t, z) surface, wherel is along the circumference of the
model,t is time, andz is in the long-axis direction.

There are two image dependent forces, an inflating ’bal-
loon force’, and one edge force. By making the balloon
force image-dependent, we are able to incorporate both re-
gional image intensity information and edge information
in the model. The balloon force is calculated as:

concordant edge:F B = n̂ (α0I + λα1) (2)

discordant:F B = n̂

(
e−

(I−λ)2

α0 + α1

)
(3)

where I is the input image,λ is an estimated image
intensity for the object,α0, α1 are two image modality-
dependent constants. The edge detection scheme in Sec-
tion 2.2 results in four precalculated edge imagesEi.
These edge images are mapped to an edge force by:

concordant:F E = n̂
|n̂êl|El + |n̂ês|Es

|n̂êl|+ |n̂ês|
(4)

discordant:F E = n̂
(n̂êl)El + (n̂ês)Es

|n̂êl|+ |n̂ês|
(5)

whereEl is the precalculated edge image for the filter
where|n̂êl| is largest, and respectivelyEs is the filter re-
sponse for which|n̂ês| is second largest. Note that since
we are using the model normaln̂ to interpolate differently
from the edge images we are only looking for edges in
a priori estimated directions, and can disregard spurious
edges.

There are four internal forces in the proposed algorithm,
curvatureF C , sliceF Z , accelerationF M , and damping
forceF D all with the purpose of ensuring spatial and tem-
poral smoothness. They are calculated as:

F C = n̂

(
x̂∂o

∂l

) (
ŷ ∂2o

∂l2

)
−

(
x̂∂2o

∂l2

) (
ŷ ∂o

∂l

)
((

x̂∂o
∂l

)2
+

(
ŷ ∂o

∂l

)2
) 3

2
(6)

F Z = n̂
∂2o

∂z2
(7)

F D = −n̂
∂o

∂t
(8)

F M = n̂
∂2o

∂t2
(9)

In order to allow user interaction, so-called pin forces
were included in the model formulation. When a pin is
placed, the closest point on the surface is located within the
same slice and time frame. The pin forces are the basis for
the three basic types of user interaction with the segmen-
tation program where the user 1) can place pins at specific
locations and times, 2) interactively drag the contour while
optimizing the contour 3) manually draw a section of the
wall with a pen-tool. The user interaction force is given
by:

F P = wi,jn̂(p− o) (10)

wherep is the coordinate of the pin, andwi,j is a weight
for the different nodes and is lineary decreasing away from
the point.



2.4. Temporal edge detection

Temporal information in the edge detection is included
by temporally smoothing the edge force at one node-point
F E over several timeframes.

F Ē(l, tn, z) =
N∑

i=−N

wiF E(l, tn+i, z) (11)

wherewi decreases linearly away from i, andF Ē is the
temporally smoothed edge force. Note that we smooth the
edge force over spatially different positionso(l, tn+i, z).
The sum in (11) can be calculated by convolution, at a
completly negligable cost in processing time compared to
the model deformation.

2.5. Deforming the Model

The different kinds of forces are calculated for each
node-point and summed to form the deforming forces as:

 F ext = αBF B + αEF E

F int = αCF C + αZF Z + αMF M + αDF D

F user = αP F P

(12)
whereαB ...αP are image modality dependent.αB is set

to one,αE andαC are image modality dependent, whereas
αZ , αM , αD can be estimated directly from the image spa-
tial and temporal resolution.αP is simply set such as
αP >> αB . The model is deformed as:

on+1 = on + γ (n̂F ext + n̂F user − n̂F int) n̂ (13)

whereγ is a scaling term. The constantγ is set at 0.75
times the minimal distance between two node points di-
vided by the largest force on the model. It is decreased
to a minimum value of 0.05 times the normalization. In
order to achieve numerical stability, after each iteration
the points defining the contour of each slice in every time
frame are redistributed to maintain equidistance between
points. Care is also taken to avoid rotation between slices
by maintaining the correspondance between individual ref-
erence points for each slice.

2.6. Papillary muscles

The segmentation is performed such as the papillary
muscles are excluded using an ad-hoc algorithm. After a
coarse segmentation of the endocardium (fewer iterations),
a shape given on a polar form was fitted based on aL0.5

norm in each slice and timeframe. Thereafter the shape is
refined by another 20 iterations. The volume of papillary

muscle and trabeculation within the ’blood pool’ is esti-
mated by calculating an automatic threshold. This hybrid
approach allows both acurate regional wall motion analysis
and correct LV mass estimates.

2.7. Long Axis Motion

Long-axis motion is an important component of LV
function. It is implemented by removing fractions of the
basal slice(s) by the LV volume curve. The amount of long
axis motion is manually measured from a separately long
axis acquisition or can be estimated using an assumption
that the LV mass is constant throughout the cardiac cycle.

3. Materials

For the validation the following set of image stacks
were used, 14 MRI-SSFP (patients), 9 gradient ehco MRI
(healthy normals) and finally 7 3D Cardiac CT image
stacks. The proposed method and a graphical user interface
was implemented in Matlab (Mathworks, Natwick, USA)
and compiled to a stand-alone application.

4. Results

For validation the data sets were analysed manually and
automatically with no user interaction. The volume of the
papillary muscles were included in the volume calculation.
End-diastolic volumes were compared, and the results are
shown using a Bland-Altman plot in Fig. 1, panel A-B).

The results of the epicardium detection was not satisfac-
tory without manual corrections for gradient echo images.
The largest difference between manual and automatic seg-
mentation was in the two most basal slices. The total com-
putational time for segmentation of the whole left ventricle
in a typical MRI dataset with 12 slices and 30 timeframes
was approximately 35 seconds on a 1.6GHz Intel Pentium
4 PC where of time for the edge detection was less than
5 seconds. Time to do the manual corrections in all time
frames is about 2-3 minutes. This should be compared to
20±5 minutes for manual delineation of two timeframes
in the SSFP data sets. To investigate the importance of the
temporal smoothing the 9 gradient echo data sets were seg-
mented with and without application of temporal smooth-
ing described in Section 2.4. Visual comparison of these
paired segmentation results demonstrated a noticable dif-
ference in 3 of the 9 data sets and with temporal edge de-
tection the true endocardial border was identified.

The software is availably free for non commercial ap-
plications at: http://segment.heiberg.se. An example of the
graphical user interface is shown in Fig.1 C).



A
0 100 200 300 400

0

100

200

300

400

EDV [ml] Manual

E
D

V
 [m

l] 
A

ut
o

y=0.97x+2.2 R2=0.99
P<0.001

B
0 100 200 300 400

-30

-20

-10

0

10

20

30

EDV Manual  [ml]

E
D

V
 A

ut
o-

M
an

ua
l [

m
l]

C

Figure 1. Correlation A) and Bland-Altman plot B) of
EDV (end-diastolic volume). Different modalities are en-
coded as gradient echo (◦), MRI SSFP (+), and contrast
enhanced Cardiac CT (4). C) Example of the graphical
user interface.

5. Discussion and Conclusions

The multimodality segmentation approach that we
present can accomplish automatic LV segmentation with
data from MRI and Cardiac CT. The key to its sucess is
that the algorithm uses all available data in a truely 3D+T
manner. The used temporal edge detection is an important
contribution that allows edge detection improvement at a
very small computational cost. The proposed method is a
huge time saver compared to manual delineation and pro-
vides a time resolved segmentation.
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