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Abstract—Delineation of the left ventricle in cardiac MRI
images is time consuming task when performed manually.
Deep convolutional neural networks have shown excellent
results in performing left ventricle segmentation. But the
datasets used are often limited in terms of variability. In
this work we used multiple convolutional neural networks,
trained on a highly heterogenous cohort, to obtain a robust
segmentation model.

I. INTRODUCTION

Cardiovascular disease is the most common cause of death
[1]. In clinical practice cardiovascular magnetic resonance
imaging (MRI) is used to obtain quantitative measures
of cardiac function. The most important parameters are
based on endocardial and epicardial delineations of the
left and right ventricles. These delineations are commonly
performed in short-axis stacks which consist of images
slicing the heart from base to apex. Manually segmenting
these stacks is a time consuming task. Convolutional neu-
ral networks have shown excellent results in performing
this segmentation [2] but may be limited to homoge-
nous data, without variability in field of view, resolution,
number of slices, number of timeframes, pathology, and
different imaging sequences between vendors.

Therefore, the aim was to generate a robust left ventric-
ular segmentation tool by coupling three networks for a)
myocardial detection, b) bounding-box estimation and c)
segmentation trained on a multi-vendor, multi-site dataset
with a large variability in pathology.

II. METHODS

The segmentation algorithm was implemented in the
freely available software Segment [3]. Code was written
in Matlab and training was performed on an Nvidia
Titan RTX. All models were trained using the Adam [4]
optimizer. All convolutional layers have a kernel size 3
otherwise.

A. Material

Two datasets were used for training, a research dataset
and a clinical dataset. Research data included images
delineated in a number of research projects. The dataset
contained healthy subjects [5], athletes [5], subjects from

three multicentre trials (CHILL-MI, MITOCARE, SOC-
CER) [6], [7], [8], patients with pulmonary hypertension,
cardiac syndrome X, atrial septal defects [9], systemic
sclerosis [10], and a broad range of other diagnoses. The
clinical dataset consisted of routine cardiovascular exam-
inations at Skane University Hospital, Lund, Sweden.

A population of n = 49 was used as a test set from [11].
These patients were carefully delineated in consensus by
three experienced observers in the end-diastolic (ED) and
end-systolic (ES) timeframes.

B. Slice selection

The slice selection network was trained using the research
dataset. The clinical dataset was not included in training
the slice selection network due to unknown consistency in
slice selection. Slices were automatically labelled based
on existing manual delineations and divided into three
classes. The classes being: above, in or below the left
ventricle. The model used was based on the Darknet-
19 architecture [12]. The layers past and including the
1000 filter convolutional layer was replaced. Instead the
network ended with a 3 filter convolutional layer followed
by a global averaging layer with softmax activation. This
resulted in a pseudo-probability output of the image being
in any of the three classes. Training was performed for
120 epochs using cross entropy loss.

C. Myocardial bounding box

Both the research and clinical datasets were used. Clinical
images were augmented in scale and rotation, and hori-
zontal flipping was applied. Bounding boxes were derived
from manual segmentation. This model was also based on
the Darknet-19 architecture [12]. In the same manner as
for myocardial detection, the last layers were replaced
by a 4 filter convolutional layer followed by a global
averaging layer with ReLU activation, yielding 4 output
values corresponding to the parameters of a bounding box.
The network loss function L, was defined as



Fig. 1.
detection network. Subsequently the myocardial bounding box network
found a region containing the myocardium in all the slices shown as a
yellow box. The image within the bounding box network were fed to
the segmentation network which generated the contours shown in the
right image.

The left image shows slice selection by the the myocardial

where X contains the network-estimated ventricle cen-
tre, myocardial height and width making up the bounding
box. The variable X denotes the ground truth values. The
model was trained for 100 epochs.

D. Myocardial segmentation

Images used for training the segmentation network were
cropped to match square bounding boxes covering the
largest manually segmented slice with an additional 10 —
50%. The network architecture proposed by Bai et. al [2]
was applied to myocardial segmentation. The model was
trained for 30 epochs using binary cross entropy loss.

E. Full pipeline

To summarize; first the slice selection network determined
slices that should be segmented. These slices were fed
to the bounding box network. After a bounding box was
detected it was made square by using only the longest side
of the suggested bounding box. The square bounding box
sides were increased by 30% in length to assure that the
entire myocardium was included. Thereafter the image
was cropped according to the bounding box and used as
input to the segmentation network. The masks generated
by the segmentation network were post-processed, pick-
ing out the largest joint segmented region. This region
was converted into endocardial and epicardial contours
shown as red and green lines in Fig. 3. A second degree
Savitsky Golay filter with filter length 45 was applied
for smoothing the contours [13]. The entire procedure is
described in Fig. 1.

F. Evaluation

To evaluate the model the clinical measures left ven-
tricular mass (LVM), end-diastolic volume (EDV) and
end-systolic volume (ESV) were used. The latter two
are the ventricular volumes of the heart in its most
relaxed and most contracted state, respectively. Dice score
for delineation match between network and experts was
computed. For myocardial detection accuracy and number
of missed or extra slices included was computed.

III. RESULTS

The slice selection network had an accuracy of 0.92 in
end-diastole and 0.90 in end-systole. Fig. 2 shows the
error in slice selection, where missed or extra slices are

TABLE I
MEAN =+ SD OF CARDIAC MEASURES FOR MANUAL AND
AUTOMATIC SEGMENTATION.

Automatic-Manual ~ Automatic Manual
EDV [ml] —-94+9 183 4+ 39 192 +41
ESV [ml] —4+7 7T £ 27 81+29
LVM |[g] 1+9 109 + 32 108 + 28
TABLE 11
MEAN =+ SD DICE SCORE FOR MANUAL AND AUTOMATIC
SEGMENTATION.
Endo Epi Myo
DSC 0914+0.04 0.944+0.03 0.8240.04

shown as negative and positive bars, respectively. The
slice selection framework was prone to discarding slices.
End-diastolic and end-systolic volumes were slightly un-
derestimated (Table I). Automatic segmentation showed
less bias and standard deviation in end-systolic volume
compared to end-diastolic volume (Table I). Fig. 3 and
Fig. 4 show the test cases with the largest error in terms of
end-diastolic volume and left ventricular mass. In Fig. 5,
6, 7, 8, 9, 10 regression analysis and Bland Altman
comparisons of the manual and automatic method are
shown. In Table II Dice similarity coefficient is shown.

IV. DISCUSSION

Previous methods achieved absolute differences in end-
diastolic volume —11+11 ml, end-systolic volume 1+10
ml and left ventricular mass 4 + 15 g [11] on the same
test set the proposed model was applied to, which can
be compared to the first column in Table 1. The left ven-
tricular mass error in Fig. 4 was positive and not related
to the missing apical slice. It is therefore likely related
to inclusion of too much papillary muscle/trabeculation.
The error in end-diastolic volume for the case shown in
Fig. 3 was negative. This indicates that it is mainly due
to the missing basal slice.

V. CONCLUSIONS

An automated left ventricular segmentation algorithm
based on deep convolutional neural networks was imple-
mented. Comparing to the previous algorithm applied to
the test set [11], the proposed model performed on par in
terms of bias with a slightly lower standard deviation in
all cardiac measures when comparing absolute difference
between manual and automatic methods. Furthermore it
requires no user input and is designed to handle variable
field of views, number of slices and pathologies.
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Fig. 2. Apical and basal slice differences for each subject in the test
set. A negative number refers to a missing apical or basal slice and a
positive means that an extra slice was included. The plot shows that the
method is prone to excluding both basal and apical slices.

Fig. 3. Test set patient with largest error in terms of end-diastolic
volume. This is likely due to that the network missed to include one
basal slice. The segmented apex is also too small.

Siole (e
»

b —

\@ (e,

—

;014;!('&.

Fig. 4. Test set patient with largest error in terms of left ventricular
mass. The error is probably due to including too much papillary
muscle/trabeculation.
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Fig. 5.
manual segmentation methods. Dashed line is
solid line is the regression line.

240 ¢

220

Automatic [ml]

ESV

300 350

Comparison of end-diastolic volume between automatic and

the line of identity and

| R=0.97, p<0.001 -~

20 : : : :
50 100 150 200
Manual [ml]
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Fig. 8.  Bland-Altman comparison of end-diastolic volumes from

manual and automatic segmentation.
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Fig. 9. Bland-Altman comparison between end-systolic volumes from
manual and automatic segmentation.
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Fig. 10. Bland-Altman comparison of left ventricular mass from manual
and automatic segmentation.



