
Segment - Technical Manual

October 22, 2018

Software platform v2.2 R6667

MEDVISO AB
http://www.medviso.com

Griffelvägen 3
SE-224 67 Lund
Sweden
Tel: +46-76-183 6442

ii

Contents

1 Regulatory status 1
1.1 Regulatory status . 1
1.2 Commercial usage of Segment 1
1.3 Indications for use . 1
1.4 Investigational purposes . 2

2 License terms 3

3 Acknowledgements 5

4 Conventions and Abbreviations 7
4.1 Typographic conventions . 7
4.2 Trademarks . 7
4.3 Abbreviations . 7

5 Document purpose 11

6 Coding Conventions 13
6.1 Naming functions . 13
6.2 Naming variables . 13
6.3 Name graphical handles . 14
6.4 Object oriented programming 14
6.5 Packaging . 15
6.6 General coding conventions 15
6.7 Units . 15
6.8 Graphical user interfaces . 15
6.9 Indentation and spacing . 16
6.10 Documenting code . 16

iii

CONTENTS

7 Coordinate Systems 19
7.1 Introduction . 19

8 Running Segment from Matlab 21

9 Overview of Segment 23

10 Architectural Design 25
10.1 List of superunits . 26
10.2 OTS software and SOUP elements 26

10.2.1 OTS software . 26
10.2.2 SOUP elements . 27

10.3 Protected code sections . 30
10.4 Global variables as data communication 30

11 Class Hierarchy Overview 33
11.1 General class hierarchy . 33
11.2 Compilation class hierarchy 33

12 DATA Object 35

13 SET Variable 47

14 Implementation Details 69
14.1 Version handling . 69
14.2 Numeric representations . 69
14.3 Loading data and interpretation of DICOM tags 69
14.4 Volume calculations . 71
14.5 Mass calculations . 71
14.6 Calculation of BSA . 72
14.7 Peak ejection/filling rate . 72
14.8 Wall thickness . 72
14.9 Calculation of regurgitant volumes and shunts 73
14.10 Infarct size, extent and transmurality 73
14.11 Number of SD from remote for Scar 74
14.12 MR relaxometry calculations 74
14.13 Pulse wave velocity . 75
14.14 Torsion . 75

14.14.1 Least squares circle fit 75

iv

CONTENTS

14.14.2 Angular discontinuity detection 77
14.15 Longaxis volumes . 78

15 Unit Implementation 79
15.1 Main Segment superunit . 79
15.2 Draw superunit . 106
15.3 Calculation superunit . 112
15.4 Helper functions superunit 118

15.4.1 Find unit . 119
15.4.2 Exist unit . 121
15.4.3 Input/Output unit 123
15.4.4 myadjust.m . 123
15.4.5 mybrowser.m . 123
15.4.6 mycat.m . 123
15.4.7 mycopyfile.m . 123
15.4.8 mycountunique.m . 124
15.4.9 mydel.m . 124
15.4.10 mydir.m . 124
15.4.11 mydisp.m . 124
15.4.12 mydispexception.m 124
15.4.13 myecgreader.m . 125
15.4.14 myexecutableext.m 125
15.4.15 myfailed.m . 125
15.4.16 mygetcurrentpoint.m 125
15.4.17 mygetedit.m . 125
15.4.18 mygetframe.m . 125
15.4.19 mygetlistbox.m . 125
15.4.20 mygetnumber.m . 126
15.4.21 mygetslider.m . 126
15.4.22 mygetvalue.m . 126
15.4.23 mygui.m . 126
15.4.24 myguide.m . 128
15.4.25 myicon.m . 128
15.4.26 myiconplaceholder.m 128
15.4.27 mymaximize.m . 128
15.4.28 mymenu.m . 128
15.4.29 mymkdir.m . 128
15.4.30 mymovefile.m . 129

v

CONTENTS

15.4.31 mymsgbox.m . 129
15.4.32 mynanmean.m . 129
15.4.33 mypoly2cw.m . 129
15.4.34 myrequirepc.m . 129
15.4.35 myset.m . 130
15.4.36 mystubfailed.m . 130
15.4.37 myuigetdir.m . 130
15.4.38 myuigetfile.m . 130
15.4.39 myuiputfile.m . 130
15.4.40 myurlread.m . 130
15.4.41 mywaitbarclose.m 131
15.4.42 mywaitbarmainclose.m 131
15.4.43 mywaitbarmainstart.m 131
15.4.44 mywaitbarmainupdate.m 131
15.4.45 mywaitbarstart.m 132
15.4.46 mywaitbarupdate.m 132
15.4.47 mywarning.m . 132
15.4.48 mywarningnoblock.m 132
15.4.49 myworkoff.m . 133
15.4.50 myworkon.m . 133

15.5 Report superunit . 133
15.5.1 Report 3D unit . 133
15.5.2 Report Volume unit 135
15.5.3 Report Radial Velocity unit 135
15.5.4 Flow unit . 136
15.5.5 Report Slice unit . 138
15.5.6 Report Bullseye unit 140
15.5.7 Pulse Wave Velocity unit 144
15.5.8 Qp/Qs / Valve unit 145
15.5.9 Unwrap unit . 145
15.5.10 Report Sheet unit . 150
15.5.11 Export unit . 156

15.6 Segmentation superunit . 161
15.6.1 Measurement unit . 161
15.6.2 Annotation point unit 162
15.6.3 LV segmentation unit 164
15.6.4 RV segmentation unit 165
15.6.5 Contours unit . 165

vi

CONTENTS

15.6.6 Viability unit . 168
15.6.7 Myocardium at risk unit 174
15.6.8 ROI analysis unit . 175

15.7 Resources superunit . 180
15.7.1 Help unit . 180
15.7.2 Preferences unit . 181

15.8 Tools superunit . 183
15.9 File superunit . 192

15.9.1 Open File unit . 193
15.9.2 Image file reader unit 197
15.9.3 DICOM file write unit 209
15.9.4 Database unit . 211
15.9.5 PACS unit . 213
15.9.6 Segment Server unit 214
15.9.7 File menu unit . 215
15.9.8 Utility unit . 216
15.9.9 Sectra unit . 218
15.9.10 External PACS unit 221

15.10 Analysis superunit . 221
15.10.1 Relaxometry unit . 221
15.10.2 Perfusion unit . 227
15.10.3 Strain unit . 231
15.10.4 Strain tagging unit 239
15.10.5 MPR unit . 241
15.10.6 Fusion unit . 244
15.10.7 General segmentation unit 246

16 Module Implementation 249
16.1 Bruker module . 249

16.1.1 Interactions . 249
16.1.2 Datastructure . 249
16.1.3 Functions . 249

16.2 MIP module . 249
16.2.1 Interactions . 249
16.2.2 Datastructure . 249
16.2.3 Functions . 249

16.3 Corelab module . 250
16.3.1 Interactions . 250

vii

CONTENTS

16.3.2 Datastructure . 250
16.3.3 Functions . 250

17 Testing Segment 251
17.1 Testing functionality . 251
17.2 How to write testcases in maketest.m 251

17.2.1 Writing test function 251
17.2.2 Add test function to list of tests 252

17.3 Testing broken callbacks . 252

18 Compiling Segment 253
18.1 Introduction . 253
18.2 Running the compilation script 253
18.3 Configuring . 254
18.4 Multi platform support . 255
18.5 Compiling documentation . 256
18.6 Sectra Plugin compilation . 256

19 How to Create Own Plug-ins 259

20 Segment User Community 261

Bibliography 263

viii

1 Regulatory status

1.1 Regulatory status

Segment may be used for either investigational off label use or commercial
purposes. Please see license terms which license form that apply to you.
Users are also required to investigate the regulatory requirements pertinent
to their country or location prior to using Segment. It is in the users respon-
sibility to obey these statues, rules and regulations.

1.2 Commercial usage of Segment

FDA approved versions of Segment are identified with a labelling upon start
up displaying licence details and the FDA 510(k) number K090833. If your
version does not display this information your version is not FDA approved
and you need to contact Medviso AB to receive a such license.

Please note that there are features that are not included in the FDA ap-
proval. These functions are marked in this User Manual that they are only
for investigational use.

1.3 Indications for use

Segment is a software that analyzes DICOM-compliant cardiovascular im-
ages acquired from magnetic resonance (MR) scanners. Segment specifically
analyzes the function of the heart and its major vessels using multi-slice,
multi-frame and velocity encoded MR images. It provides clinically relevant
and reproducible data for supporting the evaluation of the function of the
chambers of the heart such as left and right ventricular volumes, ejection
fractions, stroke volumes, peak ejection and filling rates, myocardial mass,
regional wall thickness, fractional thickening and wall motion. It also pro-
vides quantitative data on blood flow and velocity in the arterial vessels and
at the heart valves. Segment is tested on MR images acquired from both 1.5
T and 3.0 T MR scanners. The data produced by Segment is intended to
be used to support qualified cardiologist, radiologist or other licensed profes-
sional healthcare practitioners for clinical decision making. It is a support

1

CHAPTER 1. REGULATORY STATUS

tool that provides relevant clinical data as a resource to the clin-
ician and is not intended to be a source of medical advice or to
determine or recommend a course of action or treatment for a pa-
tient.

1.4 Investigational purposes

None of the organizations/persons named in conjunction with the software
can accept any product or other liability in connection with the use of this
software for investigational purposes.

2

2 License terms

For general license terms of the usage of the software, see the User Manual.

Though parts of Segment is be released in source code form, this does not
imply that standard open source rules do apply. Segment is a commercial
product and is provided free of charge to the research community as a service
and without any associated rights. Medviso AB does not give you any rights
to do commercial derivative works of it. It does not give you the right to
compile it to a distributable standalone form. See discussion on license terms
in [1].

3

3 Acknowledgements

Even if this project started as a one man project, it has grown and it would
never been possible without the help of many many people.

Financial support has been received from the Swedish Heart-Lung founda-
tion, Swedish Research Council, local founds from Östergötland County, and
Region of Scania.

I would like to acknowledge all the people that have put in feed back on
usability and desired functionality, algorithm etc. Among others: Andreas
Otto, Andreas Sigfridsson, Erik Bergvall, Erik Hedström, Henrik Haraldsson,
Henrik Engblom, H̊akan Arheden, Jan Engvall, Lars Wigström, Lisa H̊ard
af Segerstad, Karin Markenroth Bloch, Marcus Carlsson, Martin Ugander,
Mikael Kanski. Finally thank to you all Segment users in the research com-
munity that has inspired and contributed to the development.

Special thanks to code providers Erik Bergvall (core routines of strain anal-
ysis), Helen Soneson (strain analysis module, SPECT module, Image fusion
module), Shruti Agarwal (refactory of strain analysis module), Jonatan Wul-
can (Sectra Plugin module and general improvements), Johannes Töger (3D
flow and volume tracking), Mårten Larsson (3D flow and kinetic energy).

Commercial development has been done by Jane Sjögren (improvements to
general object segmentation, implementation of prototype based segmenta-
tion, CT functionality, and graphical seriesselector). General debugging and
implementation of the new interpolated contours has been done by Johan
Ugander and Erik Södervall. Report Module and general debugging have
been performed by Nils Lundahl.

5

4 Conventions and
Abbreviations

This chapter describes the typographic conventions and used abbreviations
in this manual and in the program.

4.1 Typographic conventions

A Key A at the keyboard.
Ctrl-A Control key. Hold down Ctrl key and A simultaneously.

Icon in toolbar.
*.mat Filename extension.
C:/Program Folder.
File Menu, e.g. File menu.
File→Save As Sub menu, e.g. under the File menu the item Save As is found.
Close Push/Toggle button in the graphical user interface.
} Endocardium Radiobutton in the graphical user interface.
� Single frame Checkbox in the graphical user interface.

4.2 Trademarks

Below are some of the trademarks used in this manual.

• Segment is a trademark of Medviso AB.

• Segment DICOM Server is a trademark of Medviso AB.

• Sectra PACS is a trademark of Sectra Imtec AB, (http://www.sectra.se).

• Matlab is a trademark of the Mathworks Inc, (http://www.mathworks.com).

4.3 Abbreviations

2CH Two chamber view
3CH Three chamber view
4CH Four chamber view

7

CHAPTER 4. CONVENTIONS AND ABBREVIATIONS

3D Three Dimensional
3D+T Time Resolved Three Dimensional
AA Ascending Aorta
ASW Anterior Septal Wall Thickness
ARD Aortic Root Diameter
BPM Beats per minute
BSA Body Surface Area
CMR Cardiac Magnetic Resonance
CO Cardiac Output
CT Computed Tomography
DA Descending Aorta
DE-MRI Delayed Enhancement MRI
ED End diastole
EDD End Diastolic Dimension
EDL End Diastolic Length
EDV End Diastolic Volume
EF Ejection Fraction
ES End systole
ESD End Systolic Dimension
ESL End Systolic Length
ESV End Systolic Volume
FWHM Full Width Half Maximum
GUI Graphical User Interface
HR Heart Rate
LGE Late Gadolinium Enhancement
LV Left Ventricle
LVM Left Ventricle Mass
MaR Myocardium at Risk
MO Microvascular obstruction
MB Mega Byte
MIP Maximum Intensity Projection
MPR Multiplanar Reconstruction
MR Magnetic Resonance
MRI Magnetic Resonance Imaging
PET Photon Emission Tomography
PER Peak Ejection Rate
PDW Proton Density Weighted
PFR Peak Filling Rate

8

4.3. ABBREVIATIONS

PLW Posterior Lateral Wall Thickness
PWV Pulse Wave Velocity
ROI Region Of Interest
RV Right Ventricle
RVmaj Right Ventricle Major Axis
RVmin Right Ventricle Minor Axis
SPECT Single Photon Emission Computed Tomography
SSFP Steady State Free Precision
SV Stroke volume
TOF Time of Flight
VENC Velocity Encoding limit

9

5 Document purpose

The purpose of this document is three-fold;

1. Work as a technical documentation of Segment for Medviso AB

2. Work as a technical documentation for researcher who wish to use the
plug-in functionality of Segment as described in [1].

3. Work as a implementation documentation of Segment.

Therefore, all details described in this technical manual may not be applicable
to all developers since parts of the source code is only accessable by Medviso
AB.

11

6 Coding Conventions

This chapter describes the coding conventions that has been used when cod-
ing Segment. I have really tried to use a consistent naming rules to ensure
that variables are given a logical name. However, there are occasions where
historical reasons have lead to exceptions to the rules given below.

In general Segment originally used the global variable NO indicating the cur-
rent image stack quite extensively. The use of NO is however not encouraged,
and it is highly recommendable to in the function call indicate the current
image stack. Work is ongoing to completly remove the global variable NO,
but it takes time, please see wiki and relevant tickets on this matter.

6.1 Naming functions

Functions are always named in lower case letters only. The underscore letter
is not used with the exception of:

• Callbacks are named as functionname Callback.

• Functions for mouse motion callbacks are given names ending with
Motion.

• Some functions have helper functions that are only called from other
functions with the same name. These functions are named helper.

• Functions for mouse button up/down callbacks are given names ending
with Buttonup or ButtonDown.

Note that functions should not be ended with an end (Matlabsupports
both syntaxes). This is with the exception with objected oriented program-
ming, see below.

6.2 Naming variables

The following rules apply:

• Global variables have all capital letters, i.e DATA.

13

CHAPTER 6. CODING CONVENTIONS

• Field names of structures (and structure arrays) are given names start-
ing with a capital letter. When two or more words are concatenated
then the first letter of the second word also have a capital letter. For in-
stance DATA.CurrentTool. Abbrevations are also given capital letters.
For instance SET(NO).TSize where T stands for time.

• Field names with all capital letters corresponds to matrices. For in-
stance SET(NO).IM, or DATA.BALLOON.

• The use of plural s is very limited and only used where there are limited
numbers of values the field and it may be necessary to point out that
there are more values than just a scalar. For instance DATA.ViewPanels
is just instead of DATA.ViewPanel to point out there are (or may be)
more than one view panel.

6.3 Name graphical handles

The graphical handles are named with all lower case letters and no underscore
letters. Generally the names are rather long and exploratory. The following
general naming conventions apply:

• Text edit boxes ends with edit

• Static text ends with text

• Axes objects ends with axes

• Pushbuttons ends with pushbutton

• Radiobuttons ends with radiobutton

• Checkboxes ends with checkbox

• Togglebuttons ends with checkbox

6.4 Object oriented programming

For new objected oriented functions the new syntax introduced in Mat-
lab R2007b should be used. The old usage where the class definition is
stored in a separate folder is obsoloted and existing code will be rewritten to
new standard. Note that this new coding methods using classdef requires
that an end statement is inserted in the end of the method code.

14

6.5. PACKAGING

6.5 Packaging

To improve the file structure, Matlab’s packaging feature is used. Files that
are part of the same module are placed in a directory named with an initial
’+’ sign. Calling a function file fcn name.m from a package +package name is
done by entering package name.fcn name (without the ’+’). When adding
packaged files to the compilation process, the full directory name must be in-
cluded in the string. In the example above, this becomes [’+package name’

filesep ’fcn name.m’].

6.6 General coding conventions

The use of boolean variables in function calls should be avoided since this
significantly decreases code readability. This is especially true in API-close
functions. Instead it is suggested to write two functions with different names
that performes the different tasks. This boolean coding convention is histor-
ically not followed, but should be followed for new code, and old code should
sucessively be rewritten.

Temporarily variables should be avoided, and if they are used they should
not have a scope that exceeds three lines of code. Also here this is something
that historically is not always followed. This rule should be followed for new
code and old code should sucessively be rewritten.

6.7 Units

The units of variables should be in SI-units, and the exact unit should also
be documented in a comment on the same line as where the variable is ini-
tialized or calculated. For instance:

speed = length/time; %[m/s]

6.8 Graphical user interfaces

All new graphical user interfaces should be based on the class mygui. When
doing so Segment automatically will remember the position of the user inter-
face, and coding is considerably simplified so that one does not need to use

15

CHAPTER 6. CODING CONVENTIONS

persistent variables to get application data. Please consult the documenta-
tion of mygui for further details. Graphical user interfaces that do not use
mygui should be rewritten to use mygui.

6.9 Indentation and spacing

Matlab standard indentation system is to be used, but with using the tab
size to two spaces instead of the default four. Spacing and use of parenthesis
is to be used to enhance readability. For instance

• A = 12; instead of A=12;.

• if (a>b) || (d<e) instead of if a>b||d<e

MLINT syntax guidelines should be followed and ideally when syntax hints
are overrided, they should be motivated. For instance when MLINT reports;
Warning data seems to grow inside a loop and that you should consider to
preallocate for speed. Then before inserting a pragma to remove the warning
you should make a note on why you did not preallocate (which usually is
that the routine is not time critical, but is should generally be documented).
Another example is when MLINT warns that the variable is unassigned, but
it is assigned by loading a .mat file, then this should be commented.

The use of logical short cutting operands || and && is strongly recom-
mended.

6.10 Documenting code

The source code should be well documented so that new programmers easily
can understand the code. Note, especially that the part of the code that
was trickiest to write also deserves the most comments. Functions should be
written as:

%-----------------------

%function out = foo(bar)

%-----------------------

%Explanatory help text of the function.

%Help text may span multiple lines.

16

6.10. DOCUMENTING CODE

Your code begins here

It is very important to follow this coding standard since part of this doc-
umentation is automatically generated from the source code.

17

7 Coordinate Systems

This chapter specifies the coordinate systems used in Segment.

7.1 Introduction

DICOM specifies coordinates in the RL (right/left), AP (Anterior/Posterior)
and FH (Feet/Head) coordinate system. Internally Segment uses a coordi-
nate system (x,y,z) that is relative to the respective image stack. In other
words for each image stack the relations between (RL,AP,FH) and (x,y,z) is
different.

Throughout the program, the x dimension refers to the first dimension along
the arrays (i.e the rows in Matlab). The upper left pixel in the images dis-
played on the screen have the coordinate (1,1). The unit used is in pixels.
In the normal image coordinate system this means what is usually meant as
the y coordinate if one thinks of coordinate systems learned in elementary
school. For instance plotting commands therefore generally takes the form:

plot(SET(NO).EndoY(:,3,1),SET(NO).EndoX(:,3,1));

This will plot the contour of the endocardium of the third time frame and
the first slice of the current image stack. The upper left most slice in the
montage view is slice one. Furthermore it is assumed that the slices should
be ordered so that going from the first slice to the last would be going from
the base to the apex of the heart.

The relations between the (x,y,z) and (RL,AP,FH) coordinate systems is
given by the fields ImagePosition and ImageOrientation. Below are two
examples given.

The (RL,AP,FH) coordinates (center) of the voxel(s) SET(1).IM(1,1,:,1)

are given by SET(1).ImagePosition.

The (RL,AP,FH) coordinates (center) of the voxel SET(1).IM(2,3,4) are

19

CHAPTER 7. COORDINATE SYSTEMS

given by

zdir = cross(SET(1).ImageOrientation(1:3),SET(1).ImageOrientation(4:6))’;

pos = SET(1).ImagePosition(:)’+...

(2-1)*SET(1).ResolutionX*SET(1).ImageOrientation(4:6)’+...

(3-1)*SET(1).ResolutionY*SET(1).ImageOrientation(1:3)’-...

(4-1)*(SET(1).SliceThickness+SET(1).SliceGap)*zdir;

Coordinated conversions can be performed using the functions xyz2rlapfh,
and rlapfh2xyz in calcfunctions.m.

20

8 Running Segment from
Matlab

You need to have Matlab R2011a or later to run Segment. Running Seg-
ment from Matlab prompt is just as easy as running it as a stand-alone
application. Note that necessary mex files have been compiled for Linux (64
bit), and Windows (both 64 and 32 bit). When Matlab has started, simply
type:

>> segment

To get acess to the internal variable direct from the Matlab prompt, simply
type:

>> global DATA SET NO

To get the x-coordinates of the endocardial segmentation in time frame 3
and slice 4, simply type:

>> x = SET(NO).EndoX(:,3,4)

To plot the segmentation in the current slice in another window, type:

>> figure(22);plot(SET(NO).EndoY(:,SET(NO).CurrentTimeFrame,SET(NO).CurrentSlice),SET(NO).EndoX(:,SET(NO).CurrentTimeFrame,SET(NO).CurrentSlice),’r-’);

>> axis image off;

21

9 Overview of Segment

Segment is written in Matlab, and is a fairly large software project. Cur-
rently it contains of around 130 000 lines of m-code distributed more than
200 files, and 2815 subfunctions, and 69 gui’s. There are 72 files c-code with
about 12 000 lines. There are 22 supporting .mat files, and 32 auxillary files.
In addition there are 12 000 lines in around 40 files and 300 subfunctions
of internally support lines of code keeping track on distribution, compilation
process, packaging, documentation generation etc.

This Technical Manual aims to describe how to write own plug-ins that inter-
face with the software and give some implementation details for the interested
reader. A good technical overview of the Segment project is also given in [1].

Before reading this user manual the reader should be well acquainted with
Segment and programming in Matlab. This manual is not a manual how to
use Segment, it’s intention is only to give technical details on how things are
implemented in Segment. Some implementational details are also given in
the user manual.

23

10 Architectural Design

The entire Segment block can be divided into ten function superunits. Some
of these function superunits are coded in a single m-file, whereas some can
be further divided into function units (and separate m-files). An overview
on how they communicate and relate to each other is shown in Figure 1.
Overviews of the Report and File superunits are shown in Figure 4 and
Figure 5, respectively.

Figure 1: Overview of the function superunits, which constitute the main
building blocks of Segment, and transaction analysis.

25

CHAPTER 10. ARCHITECTURAL DESIGN

10.1 List of superunits

This list provides references to sections of chapter 15 where the superunits
are documented and further divided into primitive units. It also references
ID’s of requirements that are fulfilled by the unit.

• Main superunit 15.1: RA14, RA15.

• File superunit 15.9: RB1, RB2, RB3, RC1, RC2, RC3, RE1, RE2,
RG1, RG2, RG3, RI1.

• Draw superunit 15.2: RA4, RA5.

• Calc superunit 15.3.

• Resources superunit 15.7.

• Segmentation superunit 15.6: RA6, RA7, RA8, RA9, RA10, RA13,
RE3, RA17, RA19, RA20.

• Tools superunit 15.8.

• Analysis superunit 15.10: RA12, RA21.

• Report superunit 15.5: RA16, RA17, RB4.

• Helper functions superunit 15.4.

10.2 OTS software and SOUP elements

10.2.1 OTS software

The Off-the-shelf software (OTS) software used by Segment is Matlab Com-
piler Runtime (MCR), which has the following specifications:

• Manufacturer: Mathworks

• Version: R2014a

• Hardware specifications: MCR takes about 450 MB harddisk space.

• Software specifications: Opearting system Windows 2000 or later
(both 32 bit and 64 bit are supported).

• Intended use: MCR is the runtime environment for the Matlab devel-
opment language. Segment is precompiled by using Matlab Compiler.
The compiler converts the code to encrypted pre-parsed code that is
interpreted by MCR which is installed together with each copy of Seg-
ment.

26

10.2. OTS SOFTWARE AND SOUP ELEMENTS

• Features: Execute Matlab files without an installed version of Matlab
on the computer.

• Justification for using the OTS software: MCR enables the ex-
ecution of Matlab files on computers without an installed version of
Matlab.

• Documentation to end user: Installation instructions for MCR are
included in the installation instructions for Segment. Technical docu-
mentation (this section).

• Method to ensure appropriate use: MCR will be installed by the
administrator trained by Medviso AB. The administrator is responsible
for the update of MCR when indicated by Medviso AB.

• Method to ensure the OTS software works: The verification of
the MCR are included in the Installation Process Verification.

• Control the OTS software: The MCR is only upgraded when the
development enviroment Matlab is upgraded. Matlab is only upgraded
when it is considered adventageous for the software development, and
typically it is 2-4 years between upgrades. After an upgrade, the MCR
is reverified. The MCR installer is provided at the same server as the
software installation files are.

10.2.2 SOUP elements

The software of unknown provenance (SOUP) element used by Segment is
the DCMTK library, the Non-Sucking Service Manager (NSSM) and the Bar-
Code Generator GS1-128.

DCMTK library

• Manufacturer: OFFIS - Institute for Information Technology

• Version: 3.5.4

• Hardware specifications: Not specified

• Software specifications: Opearting system Windows 2000 or later
(both 32 bit and 64 bit are supported).

• Intended use: Handling DICOM files for the hospital PACS system.

• Features:

27

CHAPTER 10. ARCHITECTURAL DESIGN

– Tools for recieving DICOM files from the hospital PACS system

– Tools to send DICOM files to the hospital PACS system

– Tools to search in the hospital PACS system

– Tools to convert between different DICOM formats

• Justification for using the SOUP element: A program was needed
for sending and recieving DICOM files to the hospital PACS connec-
tion. OFFIS DCMTK toolkit is vendor-independent and is already
established and used by hospitals.

• Documentation to end user: Technical documentation (this sec-
tion).

• Method to ensure appropriate use: The DCMTK library are in-
cluded in the general software package and do not need any processing
by the end user.

• Method to ensure the SOUP element works: The verification of
the DCMTK are included in the software testing.

• Control the SOUP element: The software comes in complete source
code and is available as open source software. There is an open dis-
cussion forum about the software but no support agreement for the
software. The DCMTK library is only upgraded to access bug fixes or
when new features useful in Segment are released.

NSSM service

• Manufacturer: Iain Patterson

• Version: 2.24

• Hardware specifications: Not specified

• Software specifications: Opearting system Windows.

• Intended use: NSSM monitors the running service and will restart it
if it dies.

• Features:

– Monitoring programs

– Re-start program if they crash

– Service helper which doesn’t suck

28

10.2. OTS SOFTWARE AND SOUP ELEMENTS

• Justification for using the SOUP element: A program was needed
for monitor and re-start our Segment Server to ensure it is restarted if
is is closed or crashed. NSSM is an open source software fulfilling our
needs.

• Documentation to end user: Technical documentation (this sec-
tion).

• Method to ensure appropriate use: The NSSM program is in-
cluded in the general software package and do not need any processing
by the end user.

• Method to ensure the SOUP element works: The verification of
NSSM are included in the software testing.

• Control the SOUP element: The software comes in complete source
code and is available as open source software. There is a bug list online
but no support agreement for the software. The NSSM version included
in our software packages is only upgraded to access bug fixes or when
new features useful in Segment are released.

BarCode Generator GS1-128

• Manufacturer: Pedro Villena

• Version: 1.3

• Hardware specifications: Not specified

• Software specifications: Matlab 2012b

• Intended use: Generate a barcode image (BMP file) using GS1-128
symbology specifications.

• Features:

– Generate an image of a barcode

– Required input is the code in digits

– Using GS1-128 symbology specifications for the generation

• Justification for using the SOUP element: A program was needed
for creating a bar-code according to FDA requirement that the device
need to have the device identification number as a bar-code in the
labelling. BarCode Generator GS1-128 is an open source software found
at Matlabs community fulfilling our needs.

29

CHAPTER 10. ARCHITECTURAL DESIGN

• Documentation to end user: Technical documentation (this sec-
tion).

• Method to ensure appropriate use: The BarCode Generator GS1-
128 program is included in the general software package and do not
need any processing by the end user.

• Method to ensure the SOUP element works: The verification of
the genrated bar-code is done by an independent barcode reader. The
result is stored together with the BarCode Generator and the result
verifies the same code as sent into the BarCode Generator.

• Control the SOUP element: The software comes in complete source
code and is available as open source software. There is a update list
online but no support agreement for the software. The BarCode Gener-
ator GS1-128 version included in our software packages is only upgraded
to access bug fixes or when new features useful in Segment are released.

10.3 Protected code sections

Some of the building blocks contains propriety algorithms and will only
be made available as p-code, i.e platform independent precompiled Mat-
lab code. The blocks that are be hidden are: lv.m, rv.m, viability.m,
flow.m, pacs.m, patientdatabase. These functions will not be described
in great detail in this document, for documentation of these files, please see
internal documents at Medviso AB.

10.4 Global variables as data communication

Segment uses two global variables to store the state of image data, graphical
handles. These two variable are SET, and NO. The structure of the variable
SET is documented in Chapter 13. The variable DATA can be seen as a global
variable, but is a global object. This allows for overloading the entire user
interface of Segment. The DATA object contains global state of the program
and all main graphical handles, and is documented in Chapter 12.

The global variable SET contains all image data, segmentation, ROI’s, mea-
surements, annotation points, etc. The variable NO is simply a scalar and
points to the current image stack. It is highly recommended not to use the

30

10.4. GLOBAL VARIABLES AS DATA COMMUNICATION

global NO, but rather include this in the call.

The reason for having global variables instead of a completely functional
programming approach is that:

• Simplicity for writing plug-ins.

• Execution speed. Using this approach there are way less variables/pointers
that needs to be passed to the functions.

The drawback with using global variable is that the variable should at all
times only reflect valid global states of the data. Therefore it is very impor-
tant that modifications of the global variables are done with care.

31

11 Class Hierarchy Overview

This chapter documents the class hierarchy of Segment. The implementation
of Segment is only partially performed using object oriented techniques, and
the main reason for this is that object oriented Matlab was not possible to
compile at the time when the oldest part of the code was written.

11.1 General class hierarchy

The general class hierarchy that partially constitutes Segment consists of
a main GUI superclass maingui and its software specific subclass, such as
the cardiac research edition Segment subclass segmentgui, the cardiac MR
clinical edition Segment CMR subclass segmentmrgui and the cardiac CT
clinical edition Segment CT subclass segmentctgui. An overview of this
hierarchy is provided in Figure 2.

Figure 2: Overview of the general GUI class hierarchy.

11.2 Compilation class hierarchy

The class hierarchy for compilation consists of a superclass makeitclass

and its subclasses. For compilations of Segment-like software, the subclass
segmentmakeitclass is used. This subclass is used for the compilation of the
standalone research edition of Segment, and is further divided into subclasses
such as segmentcmrmakeitclass for compilation of cardiac MR clinical edi-
tion Segment CMR, segmentctmakeitclass for compilation of cardiac CT
clinical edition Segment CT, and segmentmakematlabclass for packaging

33

CHAPTER 11. CLASS HIERARCHY OVERVIEW

the source code cardiac research edition. An overview is provided in Fig-
ure 3.

Figure 3: Overview of the class hierarchy of the compilation process.

34

12 DATA Object

This global object is an instance to the class segmentgui. It contains meth-
ods and properties that are used to store properties and access the graphical
handles, preferences, etc. It is an instance of one of the subclasses of the
maingui class and contains the following properties:

LogFile Location of the log file keeping track of the current
session.

ProgramVersion A string containing the version number. This
string is initiated at startup.

ProgramName Name of the program in use, e.g. Segment.

fig Handle to the main GUI figure.

BlockingFigs A list of open figures that contains GUI’s that are
sensitive to changing the current image stack NO.

imagefig Handle to the figure where the images are plotted.
Currently this is same as fig, but are reserved for
future use.

DataLoaded True if image data is present.

Silent True if no graphical output should occur. This is
usefull when writing plugins that perform batch
processes.

Handles Struct with all graphical handles in the main GUI.

InteractionLock When set to true, new calculation initiated from
callbacks are prohibited. This may be obsoleted
in the future and replaced with Matlab’s queueing
properties.

35

CHAPTER 12. DATA OBJECT

Undo Struct containing undo information.

UndoN Scalar that contains a pointer in the undo history
list.

LastSaved Time stamp when the image stack(s) last were
saved. This is used for the auto-save functional-
ity.

Volrend Reserved for future use with the future volume ren-
dering module.

ViewPanels A vector pointing to image stacks. If 2 x 2 pan-
els are shown on the screen, then the length of
ViewPanels is 4. For panels that does not contain
any image stack the corresponding pointer is set
to zero.

ViewPanelsType A cell array where each element contains the view
mode for each image panel. Allowed view modes
are:

• mode one shows the image stack as one slice.

• mode montage shows all slices of the image
stack arranged in a matrix style.

• mode mmodetemporal shows the temporal
part of a mmode image display.

• mode mmodespatial shows the spatial part
of a mmode image display.

The best way of changing viewing mode is to call
the function viewimage Callback.

ViewPanelsMatrix A cell array where each element i a two element
vector containing the number of rows and columns
for a montage view in the corresponding panel.

36

ViewIM A cell array with the length same as ViewPanels.
Each element contains a uint8 array of size N x
M x T where T is the number of time frames,
N and M are arbitrary numbers that depends on
ViewPanelsType. This is used for graphical out-
put and contains mapped intensities.

ViewMatrix A two element vector with the size of the image
panels (n x m).

LastView Save view settings for the last panel view. Used
upon double-clicking to go from the current panel
view to the last panel view.

CurrentPanel Points to the current image panel. This number
needs to be in the range [1..N], where N is the
number of valid panels.

37

CHAPTER 12. DATA OBJECT

CurrentTool String containing the current tool. Valid tools are:

• point

• measure

• select

• dragendo

• dragepi

• drawendo

• drawepi

• drawrvendo

• drawrvepi

• drawroi

• drawscar

• drawrubber

• drawrubberpen

• endopin

• epipin

• contrast

• crop

CurrentTheme Indicates which set of segmentation tools is cur-
rently on display to the user.

Tools Structure of handles to tools available in the tool-
bar.

SegmentFolder Location of the folder from which Segmentis
loaded.

imagedescriptionfileText document for setting image description pa-
rameters.

38

manualfile Location of the Reference manual.

GUI Structure of mygui objects for windows that use
this class.

GUISettings GUI settings

GUIPositions Struct array to store the positions of GUI’s that
have been in use.

AllowInt16 Option whether or not to allow int16 data.
Pref Structure with preferences. For further details,

please see Section 15.7.2.

PrefHandles Handles for Preferences window.

PrefHandlesAdvancedHandles for Advanced Preferences window.

PrefHandlesPacs Handles for PACS Preferences window.

Preview Struct storing preview data. This struct is in-
tensely used by the file open GUI. Generally the
data is store in this struct and thereafter copied to
the SET variable upon completion of the loading
process. Therefore this struct also contains infor-
mation on the last loaded/viewed image stack.

StartTime Start time for video playback.

Run True if a movie is playing.

Record True if recording is active in the movie recorder
GUI.

LastPointer Type of the pointer displayed.

LastPointerShapeCDataC data of shape of the pointer displayed.

39

CHAPTER 12. DATA OBJECT

VisibleThumbnails Array of indices of thumbnails visible in main GUI.

Icons Structure of images used as icons in toolbars and
icon bars.

ImageTypes A cell array contains the different precode image
types in Segment. They are:

• General

• Perfusion Rest

• Perfusion Stress

• Strain FFE

• Strain TFE

• Late enhancement

• Cine

• Scout

• Qflow

• T2Stir

• T1BB

The image types are used among others to find
what image stack is what for automated batch
processing of files. This list is subject to future
changes.

40

ImageViewPlanes A cell array contains the different precode image
view planes in Segment. They are:

• 2CH

• 3CH

• 4CH

• Sagittal

• Coronal

• Frontal

• Transversal

• Short-axis

• RVOT

• Aorta

• Pulmonalis

• Vena cava inferior

• Unspecified

The image types are used among others to find
what image stack is what for automated batch
processing of files. This list is subject to future
changes.

ImagingTechniques

Short names of the parameter files (*.par). This
variable is created a startup. Therefore, Segment-
needs to be restarted before new parameter files
can be used from the menu. However, the files
themselves are not cached so the content in the
files can be changed without restarting Segment.

ImagingTechniquesFullNamesFull names / titles of the parameter files. See
above for details.

41

CHAPTER 12. DATA OBJECT

ThisFrameOnly True if changes are applied only to the current
timeframe. Example of functionality is segmen-
tation, clearing segmentation etc. See details in
the Reference Manual.

StartFrame First frame played in a movie. Initiated by
SET(NO).CurrentTimeFrame, but needed for cal-
culation what frame to display when playing a
movie. See also DATA.StartTime.

SegIntersection Seg intersection

IntersectionIM Intersection image

ShowIntersectionMaskShow intersection mask

BalloonLevel Used to determine if the field DATA.BALLOON needs
to be recalculated. Stores the parameter that was
used last time to calculate DATA.BALLOON.

BALLOON A matrix of the same size as SET(NO).IM contain-
ing the radial balloon force. For further details,
see [2, 3].

EndoBalloonForce Used in the automatic LV segmentation for MR
images.

EpiBalloonForce Used in the automatic LV segmentation for MR
images.

LevelSet Helper structure to SET(NO).LevelSet.
DATA.LevelSet stores parameters that are
pertinent to the graphical user interface that does
not need to be stored in SET(NO).LevelSet.

DATASETPREVIEW A 64 x 64*N array containing the preview thumb-
nails, where N is the number of image stacks.

42

EndoEDGE0 Edge image of the endocardium in the first direc-
tion. For further details, see [2, 3].

ENDOEDGE1 See above.

ENDOEDGE2 See above.

ENDOEDGE3 See above.

EpiEDGE0 Edge image of the endocardium in the first direc-
tion. For further details, see [2, 3].

EpiEDGE1 See above.

EpiEDGE2 See above.

EpiEDGE3 See above.

EndoEdgeDetected True if the edge images of the endocardium have
been calculated.

EpiEdgeDetected True if the edge images of the epicardium have
been calculated.

MovieFrame Temporary variable used to store one frame of a
movie when recording a movie using the movie
recorder in Segment.

NumPoints Number of points along the endocardium, epi-
cardium and ROI’s. This default set to 80. This
variable should be possible to change to get more
points along a contour, but this have not been veri-
fied or tested. Note that changing this variable will
most probably cause version incompabilities with
.seg and .mat files.

43

CHAPTER 12. DATA OBJECT

BpInt Intensity in the blood pool of the image stack
SET(NO). This is used to avoid unnecessary recal-
culations of DATA.BALLOON.

MInt Intensity of the myocardium of the current image
stack. See above.

Pin Keeps track of pins.

Measure... Contains measurement data such as offset and co-
ordinates of points.

Cursor... Contains cursor data such as location and offsets.

NeedToSave True if there are changes that need to be saved.

Testing Used by maketest to tell a program when it is
being tested.

RecordMacro Used by macro helper to tell when a macro is be-
ing recorded.

Macro Used by macro helper to keep track of the macros
in a list.

MacroN Used by macro helper to keep track of the posi-
tion in the Macro list.

Buffer Contains pending actions used for macros and test-
ing.

CineTimer Timer used in cinewindow.

contourp Used in the automatic LV segmentation for MR
images.

contourbimage Used in the automatic LV segmentation for MR
images.

44

DynamicPACS Stores PACS details specified through API by an
external program.

45

13 SET Variable

This global variable is probably the most important variable/structure since
it contains all image data and all measurements.

The variable is a struct array. As an example, SET(2) refers to the second
image stack. SET(2).CurrentTimeFrame refers to the field that contains the
current time frame of the second image stack. The function loadfieldhelper

is used to control backwards compability in the SET struct. When adding
new fields it is essential to also update this function.

Below a list of all fields are given.

AccessionNumber DICOM tag Accession Number.

AcquistionTime DICOM tag AcquisitionTime

AutoLongaxis True if the amount of long-axis compensation
should be automatically calculated. See Reference
Manual for details.

BeatTime Controls how fast one heart beat is played
when playing images as a movie. Originally set
to 60/HeartRate. May be adjusted with the
slower/faster icons.

CenterX Position of the center mark (+).

CenterY Position of the center mark (+).

Children List of numbers of image stacks that are children
of (derived from) this stack.

Colormap This field contains a colormap (256 x 3) vector.
When the image is grayscale it is an empty field.

47

CHAPTER 13. SET VARIABLE

CurrentSlice This field contains the current slice of the image
volume.

CurrentTimeFrame This field contains the current time frame.

Cyclic True for image stacks that are cyclic, i.e covers a
complete heart cycle. This flag is used by the seg-
mentation engine when delineating the left ventri-
cle.

DICOMImageType This field contains the ImageType from the DI-
COM files.

EDT Left ventricle end diastolic time.

EDV Left ventricle end diastolic volume.

EF Left ventricle ejection fraction.

EPV Volume inside the epicardial volume of the left ven-
tricle.

EST Left ventricle end systolic time.

ESV Left ventricle end systolic volume.

EchoTime Echo time in MRI pulse sequence. Read from DI-
COM tags if presented otherwise set to zero. Given
in milliseconds.

EndAnalysis End time of analysis, used in flow quantification.
See also StartAnalysis. For further details, see
Reference Manual for details. Default value is
same as TSize.

48

Endslice This field contains the last slice in
the set of selected slices. The se-
lected slices is then given by: ind =

SET(NO).StartSlice:SET(NO).EndSlice;.
The field may be an empty array when no slices
are selected.

EndoCenter True if center of endocardium is used as center of
the left ventricle when doing regional wall motion
analysis. If false then the center of the epicardial
volume is used. See Reference Manual for further
details.

EndoDraged A logical array containing a 1 where the left ven-
tricle endocardial contour have been dragged.

EndoInterpX Interpolation points for the endocardium.

EndoInterpXView Interpolation points for the endocardium.

EndoPinX X-coordinates of endocardial pins. Stored as a
cell-array of vectors of doubles with the size T x
Z, where T is the number of time frames, and Z is
the number of slices. For more details about pins,
see the Reference Manual.

EndoPinY Y -coordinates of endocardial pins.

EndoPinXView Compact representation for endocardial pins.
Stored as a cell vector with the T elements con-
taining vectors.

EndoPinYView See above.

49

CHAPTER 13. SET VARIABLE

EndoX X-coordinates of the left ventricle endocardium.
Applied values are either [], or an array with size
N x T x Z, where N is the number of points along
the contour (80, but technically DATA.NumPoints,
T is the number of timeframes, and Z is the num-
ber of slices.

EndoY Y -coordinates of the endocardium.

EndoXView A compact representation used for drawing the
endocardial contour in montage view. Stored as
a double array with the size ((N+1)*Z) x T ,
where N is the number of points along the contour
(DATA.NumPoints), T is the number of timeframes,
and Z is the number of slices. It is the same as
EndoX but each slice offseted and packed separated
with a NaN so that drawing of the endocardial con-
tours can be done with a single command.

EndoYView The correspondence for the Y -coordinates to
EndoXView.

EpiDraged Same as above, but for the epicardial contour.

EpiInterpX Epicardial interpolation points.

EpiInterpXView Epicardial interpolation points.

EpiPinX Corresponding to EndoPinX.

EpiPinXView Corresponding to EndoPinXView.

EpiPinY Corresponding to EndoPinY.

EpiPinYView Corresponding to EndoPinYView.

EpiX Epicardial contour, otherwise same as EndoX.

50

EpiXView Corresponding to EndoXView.

EpiY See above.

EpiYView Corresponding to EpiXView.

FileName Filename of the file storing this image stack.

FlipAngle Flip Angle in MRI pulse sequence. Read from DI-
COM tags if presented otherwise set to zero. Given
in degrees.

51

CHAPTER 13. SET VARIABLE

Flow This struct contains information regarding how
different image stacks are related to store flow
information. Generally all information that are
common for all the coupled image stacks are only
stored in the magnitude image stack to avoid data
redundancy. One example of this is storage of
ROI’s that are only performed in the magnitude
image stack. The Flow struct contains the follow-
ing fields:

• Angio contains a reference to which image
stack that contains the angio imag. This an-
gio image is essentially the absolute value of
the velocity times the image magnitude and
could be useful for vessel identification. Nor-
mally this field is set to an empty vector as
the angio image is seldom constructed.

• MagnitudeNo contains reference to which im-
age stack contains the magnitude informa-
tion. For the image stack containing the
magnitude information this points to itself.

• PhaseNo contains reference to the image
stack containing the through plane flow in-
formation. Naming is somewhat inconse-
quent, by kept for legacy reasons. A better
name would be PhaseZ.

• PhaseX contains reference to the image stack
containing the flow in the X direction (Seg-
ment coordinate system).

• PhaseY contains reference to the image stack
containing the flow in the Y direction (Seg-
ment coordinate system).

52

Then there are also a few fields that are optional
and only available when eddy current compensa-
tion has been performed. These fields are:

• PhaseCorr contains the phase offset for the
current direction (i.e if the current image
stack is velocity/phase in the X direction),
then PhaseCorr contains phase offset in the
X direction, and so fourth. This field is al-
ways present, and if not applicable only an
empty matrix is stored.

• PhaseCorrPercentiles, level of which per-
centiles to include in the detection of the
static tissue. See documentation on the eddy
current compensation for further details.

• PhaseCorrMethod contains the selected
method for the eddy current compensation.

• PhaseCorrTimeResolved true if the eddy
current compensation is time resolved. De-
fault value is false. If time resolved, then
PhaseCorr has the same image dimensions
as IM otherwise the third image dimension is
one.

• PhaseCorrStaticTissueRois true if regions
where static tissue should be taken from
drawn ROIs instead of estimated from the
image. Default value is false.

• VelMag contains a reference to the image
stack that contains a velocity magnitude
stack (absolute value of the velocity). Nor-
mally this field is set to an empty vector
as the velocity magnitude is seldom con-
structed.

Fusion Struct reserved for Fusion Module.

53

CHAPTER 13. SET VARIABLE

GEVENCSCALE Special tag read from DICOM for GE scanners.

HeartRate Hear rate of the image stack. Note that different
image stacks may have different heart rates. Unit
is beats per minute. HeartRate is used to calculate
cardiac output.

IM This field contains the image data stored as a 4D
single array. The order of the dimensions are X x
Y x T x Z. For more details on coordinate sys-
tem conventions, see Section 7. The image data
should lie between 0..1. For more details on im-
age scaling see the fields IntensityScaling and
IntensityOffset.

ImageOrientation Same as DICOM tag ImageOrientation. If not
presented then set to 1 0 0 0 1 0. The three first
numbers contains the normalized vector of Seg-
ments Y-direction given in the patient/table co-
ordinate system. The last three numbers contains
the direction of the X-direction. For further details
on coordinate systems see Section 7.

ImagePosition Same as DICOM tag ImagePosition. If not pre-
sented then set to 0 0 0. Contains position in mm
in 3D of the upper left pixel in the top slice in the
image stack. For further details on coordinate sys-
tems see Section 7.

54

ImageType Type of images that the image stack depicts. The
field is used when identifying what image stacks to
use for different analysis. If not set at loading then
Segmenttries to figure these details out by looking
at what operations have been performed on what
image stacks. Currently applied values are:

• ’General’ (Generic Image type if not spec-
ified/identified).

• ’Perfusion Rest’

• ’Perfusion Stress’

• ’Strain FFE’ (Strain Fast Field Echo).

• ’Strain TFE’ (Strain Turbo Field Echo).

• ’Late enhancement’ (Viability).

• ’Cine’

• ’Scout’

• ’Qflow’

• ’T2Stir’

• ’T1BB’

55

CHAPTER 13. SET VARIABLE

ImageViewPlane View plane of images that the image stack de-
picts. The field is used when identifying what im-
age stacks to use for different analysis. If not set
at loading then Segmenttries to figure these details
out by looking at what operations have been per-
formed on what image stacks. Currently applied
values are:

• ’Unspecified’ (Generic Image view plane
if not specified/identified).

• ’2CH’ (Long axis 2 chamber view).

• ’3CH’ (Long axis 3 chamber view).

• ’4CH’ (Long axis 4 chamber view).

• ’Sagittal’

• ’Coronal’

• ’Frontal’

• ’Transversal’

• ’Short-axis’

• ’RVOT’

• ’Aorta’

• ’Pulmonalis’

• ’Vena cava inferior’

56

ImagingTechnique

String of capital letters identifying type acquisi-
tion used when acquiring the image stack. Possible
values depends are given by the .par files. Each
such files corresponds to one image type and con-
tains information of how image should be mapped
before segmentation. The two first letters should
correspond to imaging modality (i.e MR, CT, PT, US,
CR...). Shipped .par files are:

• CTheart.par (Segmentation of LV).

• MRBB.par (MR black-blood sequence).

• MRDE.par (MR delayed contrast enhance-
ment).

• MRGE.par (MR gradient echo images).

• MRPDW.par (MR proton density weighted im-
ages).

• MRSSFP.par (MR steady state free precision,
or fiesta).

• MRSTIR.par (MR STIR pulse sequence,
edema sequence).

• MRTOF.par (MR Time of flight sequence for
vessels).

• NMBPSPECT.par (Blood pool SPECT im-
ages).

• OT.par (Myocardial probability, obsoleted).

• PT.par (Generic for PET, not for segmenta-
tion use).

• US.par (Generic for ultrasound. Not for seg-
mentation use).

57

CHAPTER 13. SET VARIABLE

IntensityMapping A struct containing information how the voxel val-
ues of the image stack is shown on the screen. The
struct has the following fields:

• Brightness

• Contrast

• Compression (Reserved for future use)

The fields Brightness and Contrast translates
into intensity according to the equation:

I = cxi + b− 0.5 (1)

where c is contrast, b is brightness, xi is the input
intensity, and I is the output remapped intensity.
The intensity I is then clipped to the range [0..1].
The field Compression is reserved for future use
and will be used to implement image mappings
that are sigmoid shaped.

IntensityScaling The fields IntensityScaling and
IntensityOffset are used to convert the
image data IM to the true data as presented in the
DICOM images. The true data is calculated as:

z = Iα + β (2)

where z is the true image data, I is the data
stored in the field IM, α is IntensityScaling, and
IntensityOffset.

IntensityOffset See above.

IntensityScaling See above.

InversionTime Inversion time in MRI pulse sequence. Read from
DICOM tags if presented otherwise set to zero.
Given in milliseconds.

58

LVM The left ventricle myocardial volume is calculated
as EPV-LVV-PV. Unit is ml.

LVV The volume within the left ventricular endo-
cardium. Unit is ml.

LevelSet Struct that contains general object segmentation
module.

Linked List of numbers of image stacks that are linked to
this stack in Parent/Children relations.

Longaxis Long-axis motion of the left ventricle, see Refer-
ence Manual for details on how the volume is com-
pensated for long-axis motion. To convert to mm
subtract with 1.

MaR Struct that contains automatic and/or manual seg-
mentation of the ischemic myocardium at risk from
either MRI or SPECT.

Measure Struct that contains data of measurements. Please
see Section 15.6.1 for details.

Mmodex X-coordinate for the center of the mmode line.

Mmodey X-coordinate for the center of the mmode line.

Mmodelx Direction coefficient of the mmode line.

Mmodely Direction coefficient of the mmode line.

Mmodem1 Distance from the mmode line center to the first
measurement point. Usually a positive value.

Mmodem2 Distance from the mmode line center to the second
measurement point. Usually a negative value.

59

CHAPTER 13. SET VARIABLE

Modality Same as the corresponding DICOM tag.

MontageRowZoomStateFour element vector describing the current zoom
state for the image stack in row montage view
mode. This representation is potentially subject
to future changes.

MontageZoomState Four element vector describing the current zoom
state for the image stack in montage view mode.
This representation is potentially subject to future
changes.

NormalZoomState Four element vector describing the current zoom
state for the image stack in normal mode. This
representation is potentially subject to future
changes.

NumberOfAverages Number of averages acquired in MRI pulse se-
quence. Read from DICOM tags if presented oth-
erwise set to zero.

OrgXSize This refers to the original X-size of the images in
the DICOM files. This is used to load .seg files
to uncropped image data. The fields OrgYSize,
OrgTSize, and OrgZSize have the same function
in the other coordinate directions.

OrigFileName Original filename. Note that this information is
removed when anonymizing an image stack.

Overlay Number of an image stack that is currently used
as a color overlay of this stack.

PER Left ventricular peak ejection rate. Taken as the
largest negative derivative of LVV.

PERT Time of peak ejection. Given in time frames.

60

PFR Left ventricle peak filling rate. Calculated us-
ing circular convolution with a central difference
(three elements) and taken as the largest deriva-
tive of LVV.

PFRT Time of peak filling. Given in time frames.

PV Volume of the papillary muscles. See Reference
Manual for further details how that is calculated.

PapillaryIM Visualisation of papillaries to overlay on image.

Parent Number of the image stack from which this stack
was derived.

PathName Path to where the image is saved.

61

CHAPTER 13. SET VARIABLE

PatientInfo

• Name is the name of the patient.

• ID is the PatientID.

• BirthDate in the date format ’YYYYMMDD’.

• Sex. Applied values are ’’, ’M’, ’F’, ’-’.

• Age. Applied values are [], ’’, numeric,
’78Y’.

• HeartRate. Same as SET(NO).HeartRate,
retained for backwards compability.

• AcquisitionDate. Applied values, ’’, [],
and ’YYYYMMDD’.

• BSA. Applied values 0 or numeric value.
Manually entered or automatically calcu-
lated from Weight and Length. See Refer-
ence manual for details and equations used.

• Weight. Measured in kilograms. Applied
values are 0 or numeric value.

• Length. Measured in centimeters. Applied
values are 0 or numeric value.

Perfusion This is a struct containing information for perfu-
sion analysis.

Point Struct that contains data of annotation points.
Please see Section 15.6.2 for details.

ProgramVersion Describes the version of which the set struct was
created. Used for backwards compability issues,
and also to detect potential forward compability
issues.

RVEDV Right ventricle end diastolic volume, see also EDV.

62

RVEF Right ventricle ejection fraction, see also EF.

RVEPV Right ventricle epicardial volume, see also EPV.

RVESV Right ventricle end systolic volume, see also ESV.

RVEndoInterpX RV interpolation points.

RVEndoInterpXView RV interpolation points.

RVEndoInterpY RV interpolation points.

RVEndoInterpYView RV interpolation points.

RVEndoX Endocardial contour of the right ventricle. See also
EndoX.

RVEndoXView Same as EndoXView, but for the right ventricle en-
docardium.

RVEndoY See above.

RVEndoYView See above.

RVEpiInterpX RV epicardial interpolation points.

RVEpiInterpXView RV epicardial interpolation points.

RVEpiInterpY RV epicardial interpolation points.

RVEpiInterpYView RV epicardial interpolation points.

RVEpiPinX RV epicardial interpolation points.

RVEpiPinXView RV epicardial interpolation points.

RVEpiPinY RV epicardial interpolation points.

63

CHAPTER 13. SET VARIABLE

RVEpiPinYView RV epicardial interpolation points.

RVEpiX Epicardial contour of the right ventricle. See also
EpiX.

RVEpiXView Same as EpiXView, but for the right ventricle en-
docardium.

RVEpiY See above.

RVEpiYView See above.

RVM Right ventricle mass, see also LVM.

RVSV Right ventricle strove volume, see also SV.

RVV Right ventricle volume. See LVV.

RepetitionTime Repetition time in MRI pulse sequence. Read from
DICOM tags if presented otherwise set to zero.
Given in milliseconds.

Report Field used to contain information for the patient
report sheet generator functionality. This field is
only set for the first image stack (i.e SET(1)). The
exact content of this struct is subject to change.

ResolutionX Contains pixelspace in mm in X-direction. For
discussion on coordinate systems, see Section 7.
ResolutionY gives pixelsize in mm in Y-direction.

Roi a struct that contains information of store region of
interest (ROI). Please see Section 15.6.8 for details.

RoiCurrent number of current Roi

RoiN number of Rois in total in the image

64

Rotated True for image stacks that are rotated around a
common rotation axis. This is currently imple-
mented as an add-on and only affects the volume
calculation. Currently 3D visualization does not
take this flag into account. This will be addressed
in future versions.

RotationCenter Position of the rotation center in the image stack
(y-coordinate).

SV Left ventricle stroke volume.

Scanner Identified scanner identified by parsing the DI-
COM tag Manufacturer. Presented values are:

• ADAC

• Bruker

• GE

• Philips

• Siemens

• Suinsa

• Toshiba

Scar This is a struct containing information for viabil-
ity analysis. For details about the algorithms and
internal representation, please see 15.6.6.

SectorRotation Rotation of the Sector compartmentization of the
left ventricle used for regional myocardial analysis.
Unit is degrees. This is can be manually adjusted
from the bulls-eye GUI.

SequenceName Name of the sequence, taken from DICOM tags.

65

CHAPTER 13. SET VARIABLE

SeriesDescription Series description of the image serie, taken from
DICOM tags.

SeriesNumber Series Number taken from DICOM tags.

SliceGap Gap between slices in millimeters (if present).
Read from DICOM file by looking at the tag
SpacingBetweenSlices if present. If not present,
then the DICOM tags ImageOrientation and
ImagePosition plus SliceThickness from above
are used.

SliceThickness Thickness of slices in millimeters. Read from DI-
COM file by looking at the tag SliceThickness.
If not present, then the tags ImageOrientation

and ImagePosition are used.

SpectSpecialTag Read from DICOM file for determination of the
image tag ImageType in SPECT images. Valid
inputs are ’Rest’, ’Rest Prone’, ’Stress’ or ’Stress
Prone’.

StartAnalysis Time frame for start of analysis, used in flow quan-
tification. See Reference Manual for details. De-
fault value is 1.

StartSlice This field contains the first slice in the set of se-
lected slices. For more details, see below.

Strain This is a struct containing information for strain
analysis from velocity encoded MR images. For
details about the algorithm and internal represen-
tation, please see 15.10.3.

StrainTagging This is a struct containing information for strain
analysis from tagged MR images.

Stress Reserved for future usage.

66

StudyID StudyID taken from DICOM tags.

StudyUID StudyUID taken from DICOM tags.

TDelay Trigger delay (i.e starting of image acquisition af-
ter trig pulse). Read from DICOM tags if pre-
sented otherwise set to zero. Given in seconds.
Currently unused.

TIncr Time increment in seconds between time frames.
Must be non zero when image stack is time re-
solved. If increment between time frames is not
uniform, the value contained here is the mean time
increment.

TimeVector Vector containing time position of each timeframe.

TSize Size of image stack in temporal direction.
The following two expressions are equivalent
SET(NO).TSize and size(SET(NO).IM,3).

VENC Velocity encoding range in MRI pulse sequence.
Read from DICOM tags if presented otherwise set
to zero. Given in centimeters per second.

View Struct that stores information of the current view.
Used to retain the same view after saving an image
stack. Only SET(1).View is filled.

XMin When loading images it is possible to crop the im-
ages. XMin contains the number of pixels that the
contours are translated due to cropping compared
to the original image size. When no cropping is
performed XMin is 1.

67

CHAPTER 13. SET VARIABLE

XSize Size of image stack in X-direction. The following
two expressions are equivalent SET(NO).XSize and
size(SET(NO).IM,1).

YMin Same as XMin except relates to the Y-direction.

YSize Size of image stack in Y-direction. The following
two expressions are equivalent SET(NO).YSize and
size(SET(NO).IM,2).

ZSize Size of image stack in Z-direction (number of
slices). The following two expressions are equiv-
alent SET(NO).ZSize and size(SET(NO).IM,4).

68

14 Implementation Details

This chapter contains the implementation details given in the Segment User
Manual.

14.1 Version handling

A proper version handling is employed when developing Segment. A detailed
version history of Segment is found in the revision log of Segment SVN.

14.2 Numeric representations

All numbers are stored and used internally as double precision floating points
with the following exceptions:

• Images are stored as single floats (normalized) or as integers (uint8),
and then as they are stored in the DICOM files. Most functions in
Segment will automatically convert the data to floats.

• Edge detection results are stored as integers (16 bits, ’normalized’)

• Character strings are stored in 8bit ASCII format

• Infarct maps are stored as int8 (manual interaction), and uint8 (result).

• General segmentation tool store objects as levelset function with an
uint8 representation where the zero levelset resides at 128.

Internally the image stack is normalized upon loading by a global maximum
intensity such that all values are [0..1]. Offset and scaling is also calculated
so that the image stack can be reconverted back to original signal intensities.

14.3 Loading data and interpretation of DICOM tags

This section describes how Segment interprets DICOM information to cal-
culate important parameters suchs as geometric properties of the images.

• Number of slices. This is calculated from the presence of different slices
based on the DICOM tags ImagePosition and ImageOrientation.

69

CHAPTER 14. IMPLEMENTATION DETAILS

• Number of timeframes. This is based on dividing the total number of
images with the number of slices.

• Time increment in ms between each timeframe. If uniform, this is
based on the difference between the number of timeframes divided by
largest and the smallest value of the DICOM tag TriggerTime. If the
DICOM tag TriggerTime is not present then the DICOM tag TR is
used as time increment. Note that this might depent on your k-space
acquisition scheme so for scanners that do not report TriggerTime you
really need to double check the estimated value of time increment. For
perfusion and other image stacks with non-uniform time increment,
this is calculated using differences in AcquisitionTime.

• Heart rate. The heart rate is taken from the DICOM tag HeartRate if
present. Note that many vendors (including Siemens) does not specify
this. As a fall back Segment tries to calculate the heart rate assum-
ing full R-R intervall coverage by using of trigger time (i.e it does not
working for prospective imaging series). For long image acquisitions
where one image is taken approximately for each heart beat then the
heart rate is taken as the time between start of image acquisition and
end of image acquisition adjusted for the number of frames. Note that
in many cases this heart rate calculation will fail. Heart rate can be
adjusted under patient details. Note also that heart rate may vary be-
tween image stacks therefore do not press Apply for all when manually
changing heart rate. Heart rate is not used in any calculaion, instead
time increment between image frames is used in all calculations.

• Slice thickness in mm. The slice thickness is taken from the DICOM
tag SliceThickness. If this tag is not present then the information is
taken from same DICOM tags as number of slices, and assuming slice
gap to be 0.

• Gap between slices in mm. This is taken from the DICOM tag Spacing

BetweenSlices.

• Pixelspacing in X-direction in mm (vertical direction in Segment). This
is taken from the DICOM tag PixelSpacing.

• Pixelspacing in X-direction in mm (horisontal direction in Segment).
This is taken from the DICOM tag PixelSpacing.

• Velocity encoding (VENC) in cm/s. For non velocity encoded images

70

14.4. VOLUME CALCULATIONS

this should be 0. How this is interpretated involvs proprietry informa-
tion of different scanner vender information.

• Rotated image stack. This should by default be false. If your image
stack is rotated, then change this to true. Currently this parameter is
not taken from information in the DICOM tags and the user needs to
manually change this when loading rotated image stacks.

• Cyclic image. If the image stack is cyclic, i.e covers the whole heart
cycle this should be true (default). For prospectively gated image series
this should be false. This affects mainly the automated segmentatin
algorithm. Currently this information is not read from the DICOM
information.

14.4 Volume calculations

The volume calculations are done by a summing the area in each slice. The
main reason for not using a more advanced volume integration method is
that no one else is using that and therefore it might be difficult to compare
the results. Segmentation (i.e. delineation of endocardium and epicardium)
is stored on a sub-pixel accuracy and subsequent calculations are on a sub-
pixel basis. For viability the classification into viable or scar is done on a
pixel-wise basis and there the volume calculations are done by summing the
number of pixels.

For the rotated image stacks the volume is given by a integration method.
The volume contribution of each outline is given by :

δV =
π

2 ∗ Z

∫
y(s)2sign(y(s))

dx

ds
ds (3)

where the curve is given on a parametric representation (x(s), y(s)), Z is the
number of slices in the rotated image stack. No long-axis compensation is
performed for the rotated image stacks.

14.5 Mass calculations

When converting volume to mass the density is assumed to be 1.05 g/ml.
Note that this number differs in the literature between 1.04 to 1.05. Further-
more, note that these numbers are valid for healthy myocardium ex-vivo,

71

CHAPTER 14. IMPLEMENTATION DETAILS

what happens in for instance infarcted regions is not shown in the literature.
Therefore usually it is better to report volume instead of mass.

14.6 Calculation of BSA

The formula used is based on Mosteller.

BSA =

√
w ∗ h
3600

(4)

where w is the body weight in kg, and h is height in cm.

14.7 Peak ejection/filling rate

When calculating peak ejection and peak filling rate the volume curve is
differentiated using forward difference approximation. For cyclic datasets
cyclic convolution is used for the calculation.

14.8 Wall thickness

Currently wall thickness is defined as the thickness along a radial spike from
the endocardial or the epicardial center (depending on setting in the prefer-
ences. In the future I plan to also include the modified center line method.
Note that the centers are calculated for each timeframe separately.

Wall thickening is defined as the wall thickness in end-systole minus the wall
thickness in end-diastole. Note that it is possible to manually or automati-
cally select what timeframes that are diastole or systole respectively.

Fractional wall thickening is defined as:

WTf =
WT −WTED

WTED

(5)

Where WTf is fractional wall thickness and WT is wall thickness and WTED

is wall thickness in end-diastole. In the bulls eye plot then fractional wall
thickening is showed in end-systole.

72

14.9. CALCULATION OF REGURGITANT VOLUMES AND SHUNTS

14.9 Calculation of regurgitant volumes and shunts

The regurgitant fraction for the aortic valve and the pulmonary values are
calculated as:

r = 100
vback

vforward

(6)

where r is regurgitant fraction, vback is backward volume, and vforwd is for-
ward volumes. Backward volumes is taken as timeframes where the net flow
is negative and integrated over the entire cardiac cycle.

The regurgitant fraction for the tricuspid and mitral valve are calculated as:

r = 100
SV − vforwd

SV
(7)

where r is regurgitant fraction, and SV is stroke volume for left or right
ventricle, respectively. vforwd is forward volume.

The Qp/Qs ratio is defined as

QpQs =
Qp

Qp

(8)

where Qp is the stroke volume of the pulmonary artery and Qs is the stroke
volume of the aortic artery.

14.10 Infarct size, extent and transmurality

Calculations of infarct sizes etc are based on ’counting’ pixels, i.e. each
pixel has a binary classification. There are two methods for regional analysis
available, one are based where the percentage of the pixels that are inside the
sector. The other method is based on radial spikes from the center (endo-
or epicardial depending on setting in the preferences). The line between en-
docardium and epicardium is resampled in 50 steps and the percentage of
infarcted pixels are counted.

73

CHAPTER 14. IMPLEMENTATION DETAILS

Infarct extent is defined as the projected infarcted area on the endocardial
surface [4].

Iext =
∑
i

TiRi

Ri

(9)

where Iext is the infarct extent, Ti is the transmurality of sector i and Ri is
the mean endocardial radius of sector i.

14.11 Number of SD from remote for Scar

The number of SD from remote for an existing scar segmentation is calculated
by the function found in the main menu in Segment under MR menu Viability
menu and then the menu option Get SD from Remote. The presented value is
calculated by first calculate the mean and sd in the remote area (Meanremote

and SDremote). If there exist ROIs named Remote ROI, these regions define
the remote area. Otherwise the whole myocardium except for the scar re-
gion defines the remote area. The presented SD from remote value is then
calculated by

SDfromRemote =
Toptim −Meanremote

SDremote

(10)

The optimal threshold value (Toptim) represent the optimal threshold for
seperating the remote and the scar regions based on the existing scar seg-
mentation. This value is defined by an exhaustive search where the threshold
is set to all intensities represented in the image stack. For each threshold,
the number of missclassified pixels are counted (total of both missclassified
remote pixels and missclassified scar pixels). The optimal threshold value
is then defined as the threshold corresponding to the minimal number of
missclassified pixels.

14.12 MR relaxometry calculations

The MR relaxometry calculation for T1/T2 mapping is given in the paper
[5]. For clarification, the implementation of Look Locker correction uses the
standard formula as is used in previous literature: T1=T1*(B/A-1). The
formula in [5] gives the same result as the standard formula. Implementation
of the ADAPTS T2* mapping is given in the paper [6].

74

14.13. PULSE WAVE VELOCITY

14.13 Pulse wave velocity

The implementation of the pulse wave velocity unit is described in the paper
[7].

14.14 Torsion

In short axis cardiac images the heart muscle wall of the left chamber is well
approximated by a circle. The method finds the axis of rotation, AoR, for
the left chamber as the center of a circle fit to the tracking points generated
by the segment strain module. For the circle fitting a least squares method
is used.

14.14.1 Least squares circle fit

The circle is fitted by minimizing the global squared radial difference between
all tracking points for all timeframes, (xi, yi), i = 1, ..., N and a circle with
radius r =

√
a for each slice. For nicer calculations we make the tracking

point cloud zero mean and define a new coordinate system

u = x− 1

N

N∑
i

xi, v = y − 1

N

N∑
i

yi (11)

The properties of the circle determining the fit is the radius r and center
(uc, vc) The circle equation we are going to work with is

f(u, v) = (u− uc)2 + (v − vc)2 − a = 0 (12)

which yields the least squares expression we want to minimize.

M(a, uc, vc) =
N∑
i

f 2(ui, vi) =
N∑
i

((ui − uc)2 + (vi − vc)2 − a)2 = 0 (13)

The minima is found by solving,

dM

da
= 0 (14)

dM

duc
= 0 (15)

dM

dvc
= 0 (16)

75

CHAPTER 14. IMPLEMENTATION DETAILS

for all parameters of M . From (14) we get that

dM

da
= 2

N∑
i

f(ui, vi)
df(ui, vi)

da
= −2

N∑
i

f(ui, vi) = 0. (17)

Resulting in

dM

da
= 0 ⇐⇒

N∑
i

f(ui, vi) = 0. (18)

Then consider (15). As (15) (16) only differ in notation, any result for (15)
is applicable to 16.

dM

duc
= 2

N∑
i

f(ui, vi)
df(ui, vi)

duc
= 4

N∑
i

(ui − uc)f(ui, vi) (19)

Since 18,

dM

duc
= 0 ⇐⇒

N∑
i

uif(ui, vi) = 0. (20)

and the same goes for 16.

dM

dvc
= 0 ⇐⇒

N∑
i

vif(ui, vi) = 0. (21)

expanding equation (20) yields

dM

duc
=

N∑
i

ui(u
2
i − 2uiuc + u2c + v2i − 2vivc + v2ca) = 0 (22)

Define Su =
∑N

i ui and Sv =
∑N

i vi then

dM

duc
= Su3 − 2ucSu2 + u2cSu + Suv2 − 2vcSuv + v2cSu − aSu = 0 (23)

In making the coordinates zero mean Su = 0 we get the equation

ucSu2 + vcSuv =
1

2
(Su3 + Suv2) (24)

76

14.14. TORSION

After doing the same for (21) we obtain the system{
ucSu2 + vcSuv = 1

2
(Su3 + Suv2)

ucSuv + vcSv2 = 1
2
(Sv3 + Svu2)

(25)

which can be converted into a matrix equation[
Su2 Suv

Suv Sv2

] [
uc
vc

]
=

[
1
2
(Su3 + Suv2)

1
2
(Sv3 + Svu2)

]
(26)

This gives us an easy way to get the least squares fitted circle center. For the
center in the original (x, y) domain translate with the previously subtracted
mean. Finally for the radius, expanding equation (18) and simplifying yields

a = u2c + v2c +
Su2 + Sv2

N
, (27)

where

r =
√
a. (28)

14.14.2 Angular discontinuity detection

After fitting a circle to each time frame with tracking points we can translate
the points in each time frame so that the fitted circle center i.e the AoR is in
origo. With this in place a polar coordinate change results in an approximate
line like formation of the points, lets call it a worm. Who’s movement along
the θ axis is the rotation of the heart muscle. Here a problem arises. Since
θ ∈ [−π, π], θt + ∆θ > |pi| results in a sign change and the point appears
at the lower limit if it passed the upper and vice versa. This needs to be
mended if we are to measure angular distance from a starting point. This is
done by examining

∆θt = θt − θt+1 (29)

for each tracking point, adjusting the point with ±π (sign depends on border
transition) if |∆θt| > 5.

Torsion is then found as the difference between the rotation in a apical and
a basal slice normalized with the distance along the long axis of the heart
between the slices and the mean radius.

77

CHAPTER 14. IMPLEMENTATION DETAILS

14.15 Longaxis volumes

Volumes can be calculated using segmentation from longaxis images. The
algorithm begins with automatically locating images labeled 2CH, 3CH and
4CH that contain segmentation. If the same kind of segmentation is found
in two such images, the volume is calculated by rotating each segmentation
area one full revolution around the axis of intersection and taking the mean of
these volumes. If there are three images that contain the same segmentation,
the volumes are calculated as described above for each pair of images, and
the mean of these three values is used.

78

15 Unit Implementation

This chapter contains the implementation of different units of Segment. Some
of the units are modules, which means that they are a part of the program
that represents a separate module and requires a special license file. A unit
is the smallest divided unit of the code documented in the technical manual.

15.1 Main Segment superunit

The purpose of the main Segment block is to work as a backbone for which
all other units can be incorporated. It hosts almost all central callbacks and
motion functions.

The unit consists of the file segment main.m, the GUI superclass maingui.m
and its software specific subclass. This class hierarchy is documented in
detail in Chapter 11.

Interactions

Superunits called from the main Segment unit are

• Draw - Graphical updates upon commands to change view or modify
an image.

• Calc - Calculations for images or quantifications that are used in the
GUI.

Datastructure

The data structure is the previously described SET structure and the DATA

object.

Functions in segment main.m

addnotopanel(no)

addtopanels(no,mode)
Finds an open space, otherwise increases number of panels.

79

CHAPTER 15. UNIT IMPLEMENTATION

addviewicon helper(callback,tooltip,cdata,tag,separator)
Helper fcn to add an icon.

allhidden

[x,y,name] = askcontour(queststri)
Show menu so that user can indicate what contour to use.

Used by levelset to import contours, and by export function

to export contours as ascii file.

returns contour in x, and y, and a name of the contour.

autocontrast(no,silent)
Helper functionk to autocontrast Callback .

autocontrast Callback
Automatically calculates contrast settings.

autocontrastall Callback
Automatically calculates contrast settings.

varargout = autozoom
Autozooms everything that is displayed.

buttondowntoggler(caller,panel)
when clicking in a image toggles to the correct handle buttondown.

[varargout] = cell2clipboard(outdata,writetofile)
Converts a cell to a string that is output to clipboard.

If more than 8000 cells are written then an .xls file is

written instead. Note that this used active-X on Windows and requires

Excel to be installed on the computer.

center Buttondown(panel)
Called when center ’+’ is pressed down, sets motion and buttonup fcns.

center Buttonup
This function is called when buttonup occurs after draging center point.

center Motion
Motion function of the center point.

80

15.1. MAIN SEGMENT SUPERUNIT

centeronslice(slice,no,zsz)
Put slice in center of montagefit view.

changewheel Callback(h,e)
scrollwheel with modifer.

Tab are not included but you can if you like.

checkconsistency(timeframes,slice)
Check consistency, to prevent earlier

manual segmentations that have problems with

direction lef/right.

[xout,yout] = checkconsistencyhelper(xin,yin)
Make sure that the contour is counter clock-wise and that it starts at

three o clock. Also ensures that the points are evenly distributed.

corrupted = checkcorrupteddataforautomaticsave(setstruct)
This function checks if the data (SET) is corrupted due to corrupted

loading when loading files which has been saved with older saveversion

see ticket 502 in wush for more details on the bug.

checkforduplicatehide(name,state)

cinetool Callback
Starts the cinetool that allows simultanues segmentation at the

same time as it plays.

clickedpin Callback(type)
Called when user clicks on a pin.

contrast Callback(arg,panel)
Activated by contrast tool, different from resetlight Callback (above).

mask = createmask(outsize,y,x)
Function to generate a mask from a polygon represented with the vectors x

and y.

ctrlc
function to handle ctrl-c keypress, which is disabled.

81

CHAPTER 15. UNIT IMPLEMENTATION

do = doatrialscar(no)
Helper function to check if user input is for atrial scar or lv scar

(default).

doputpin Callback(type)
Put pins. Called when clicked, puts an pin and refines.

dragepi Buttondown(type,panel)
Button down function for scaling of objects / contours.

dragepi Buttonup(type)
Button up function for scaling.

dragepi Motion(reset)
Motion function for scaling.

ok = enablecalculation
Returns ok, if slices are selected. Sideeffect of

this function is that it turns on interaction lock, stops movie. Calling

this function will not allow user to click on a new function before

endoffcalculation is called. Note that this mechanism needs to be pretty

safe with try/catch clauses otherwise Segment may hang. Viewrefresh calls

endoffcalculation.

endo Buttondown(panel)
Button down function for manual draw of endocardium.

endoffcalculation
Turns off interaction lock, called after a calculation. See above.

epi Buttondown(panel)
Button down function for manual draw of endocardium.

esed Buttondown(type)
Buttondown function when dragging ES or ED markers in volume graph.

esed Buttonup(type)
Buttonup function when dragging ES or ED markers in volume graph.

esed Motion(type)
Motion function when dragging ES or ED markers in volume graph.

82

15.1. MAIN SEGMENT SUPERUNIT

esedtimebar Buttondown(type)
Buttondown function when dragging ES or ED markers in time bar graph.

esedtimebar Buttonup(type)
Buttonup function when dragging ES or ED markers.

esedtimebar Motion(type)
Motion function when dragging ES or ED markers in time bar graph.

evalcommand Callback
Function to evaluate matlab commands from compiled version.

fasterframerate Callback
Makes movie play faster.

figure DeleteFcn
Shut down Segment in a controlled manner, and remove

global DATA SET NO. Note that filequit callback takes

care of asking user yesno.

flowaxes Buttondown
Called when user has clicked flow graph, sets current

timeframe to clicked point.

framemode Callback(type)
If type 1 we have pressed the single frame mode button type 2 the multi frame mode button.

preview = genemptypreview(datapath)
Generate an empty preview struct.

[xlim,ylim] = getbox(no,destno,doindex)

[x,y,slice] = getclickedcoords
Find coordinates where the user last clicked. x and y are given in internal

coordinate system, i.e the functions determines slice in montage view.

no = getclickedpreview(˜,y)
function which returns the clicked preview image.

[intersections, maxintersect] = getendointersection(no)
Returns the intersection of the endocardial segmentation and the current

slice and current time frame of SET(no).

83

CHAPTER 15. UNIT IMPLEMENTATION

r = getfieldifcommon(SET, fname)
Helper function to filesavedicom Callback.

t = getframenumber
Calculates what frame to show when playing a movie if storing a movie

then show next frame otherwise user timer info.

slicestoinclude = getmontagesegmentedslices(no)
Get slices to include in montage segmented view.

numericversion = getnumericversion
function called to get versionnumber after R. For example in ’1.9 R4040’ this function returns 4040.

helpimagepos(im,sector,ofs,konst)
helper function to display image.

helpimageposneg(im,sector,konst)
helper function to display image.

hide(names,states)

highlighttool(h)
Helper function to change color of a tool to represent that the tool is

selected.

state = iconson(name)
if given name of button return state if run with no input returns

states of all buttons. if given cell with multiple button return icons

in order of request.

fig = initializesegment(programversion)
Initialization of Segment GUI.

initmenu
Initalize the main menu, for instance adds extra utilities, and plugins.

iconhandles = initviewtoolbar
Initalize view toolbar.

interpdeletepoint
Delete interp point.

84

15.1. MAIN SEGMENT SUPERUNIT

interpdeletepointall
Delete interp points for all slices timeframes.

interpdeletepointthisslice
Delete interp points this slice.

interpdeletepointthisslicephase
Delete interp points this slice and phase.

interpdrawGuessPoints Callback(type,panel)
Guess points in current selection then moves to corrosponding tool.

interpdraw Buttondown(panel,type,forcedraw)
Button down function to draw interp points.

[interpx,interpy] = interpdrawhelper(interpx,interpy,contourx,contoury,x,y)
Helper fcn to interpdrawbuttonup

Side effects is update of DATA.Pin.

[xout,yout] = interphelper(pinx,piny)
Interpolates points to create a contour without loops.

interppointButtonup(type)
Button up function for interp points.

interppointMotion(type)
Motion function for interp points.

tool = interptoolfromcoords(x,y,slice)
get tool from point

valid for ’interpendo’ ’interpepi’ ’interprvendo’ ’interprvepi’.

mainresize Callback
This fcn is called when user resizes GUI.

makeviewim(panel,no)
Rearrange data to show all slices.

manualdraw Buttondown(panel,type,new)
Button down function for manual drawings.

85

CHAPTER 15. UNIT IMPLEMENTATION

manualdraw Buttonup(type,new,obj)
Button up function for manual drawing.

manualdraw Motion
Motion function for manual drawings.

maxlvdiameter Callback(type)
Get maximum LV diameter.

mccheckconsistency
Check consistency, to prevent earlier

manual segmentations that have problems with

direction left/right.

measure Buttondown(panel)
Button down function for placing measurements.

measure Motion(ind)
Motion function for measurements.

measure Motion translate(reset)
Motion function for measurements.

measureexport Callback
Export measurements.

measuremove Callback(dx,dy)
Helper function to move measurements.

measurepoint Buttondown(panel)
Buttondown function when clicking on a measurement point/marker.

measureput Buttonup
Called when a measurement point (except the endpoint) is placed.

measureshapeexport Callback
Export measurement shape.

mmode1 Buttondown(panel)
Called when mmode1 is pressed down, sets motion and buttonup

function.

86

15.1. MAIN SEGMENT SUPERUNIT

mmode1 Motion
Motion function of the first mmode point.

mmode1line Buttondown(panel)
Called when mmode1line is pressed down, sets motion and buttonup

function.

mmode1line Motion
Motion function of the first mmode line.

mmode2 Buttondown(panel)
Called when mmode1 is pressed down, sets motion and buttonup

function.

mmode2 Motion
Motion function of the second mmode point.

mmode2line Buttondown(panel)
Called when mmode1line is pressed down, sets motion and buttonup

function.

mmode2line Motion
Motion function of the second mmode line.

mmode Buttonup
This function is called when buttonup occurs after draging one

of the mmode objects.

mmodecenter Buttondown(panel)
Called when mmode center is pressed down, sets motion and buttonup

function.

mmodecenter Motion
Motion function of the mmode center point.

mmodempoint1 Motion
Motion function for mmodepoint one.

mmodempoint2 Motion
Motion function for mmodepoint two.

87

CHAPTER 15. UNIT IMPLEMENTATION

mmodepoint1 Buttondown(panel)
Called when mmodepoint1 is pressed down, sets motion and buttonup

function.

mmodepoint2 Buttondown(panel)
Called when mmodepoint1 is pressed down, sets motion and buttonup

function.

mmodetimebar1 Buttondown(panel)
Called when mmodepoint1 is pressed down, sets motion and buttonup

function.

mmodetimebar1 Motion
Motion function for mmodepoint timebar.

mmodetimebar2 Buttondown(panel)
Called when mmodepoint1 is pressed down, sets motion and buttonup

function.

mmodetimebar2 Motion
Motion function for mmodepoint timebar.

montage Buttondown(panel)
Button down function for selecting slices in montage view.

montage Buttonup(panel)
Button up fucntion for selecting slices in montage view.

montage Motion
Motion function when selection slices in montage view.

move Buttondown(type,panel)
Button down function for moving / translating objects / contours.

move Buttonup(type)
Button up function for moving functions.

move Motion(reset)
Motion function for moving / translating objects / contours.

moveall Buttondown(type,panel)
Button down function for moving / translating all objects / contours.

88

15.1. MAIN SEGMENT SUPERUNIT

moveall Buttonup(type)
Button up function for translating all objects / contours.

moveall Motion(reset)
Motion function for moving / translating all objects / contours.

movealltowardsapex Callback
Changes CurrentSlice (and that of parallel image stacks)

towards apex.

movealltowardsbase Callback
Changes CurrentSlice (and that of parallel image stacks)

towards base.

movetowardsapex Callback
Change current slice towards apex.

movetowardsbase Callback
Change current slice towards base.

nextallframe Callback
Displays next timeframe in currrent image panel and adjust all visiable

image stacks to the corresponding part of the cardiac cycle.

nextframe Callback
Displays next timeframe of current image panel. Sideeffect is that the

movie display is stopped if running.

normal Buttondown(panel)
Called when button down in normal view.

sameview = orientationcomparison(setindex1,setindex2)
Compares the SET.ImageOrientation between two SETs.

Help function to updateparallelsets

Return values:

sameview : true if the orientations are parallel.

pan Buttondown
Button down function for panning of current image panel.

89

CHAPTER 15. UNIT IMPLEMENTATION

pan Buttonup
Button up function for panning.

pan Motion(init)
Motion function of pan.

pin Buttonup
Button up function for pins.

pin Motion(type)
Motion function for pins.

[PinX,PinY,pinwarn] = pinresize(PinX,PinY,tf,slice,mean,f)
Helper function to move pins when resizing contours.

placetimeresolvedpoints Callback
When this option is enabled then points are placed timeresolved

and the name is re-used.

playall Callback(˜)

playall Helper
Starts movie display of all visible image stacks.

playmovie Callback(keypress)
Starts playing current image stack as a movie.

plotmodelrot Callback(daz,del)
Changes view of 3D model of the segmentation.

[x,y] = pointsfromcontour(X,Y,nbr points)
select points from X,Y with probability higher

when derivative magnitude in respect to distance to mass centre

is large.

previousallframe Callback
Displays previous time frame in current image panel. For all other visible

image stacks they are adjusted to show correspondig part of the cardiac

cycle.

90

15.1. MAIN SEGMENT SUPERUNIT

previousframe Callback
Displays previous time frame of current panel.

putpin Buttondown(panel,type)
Button down function for pins.

putpin Callback(panel,type)
Callback to put pins.

recursekeypressfcn(h,fcn)
Helper function to create callbacks to keypressed function.

z = remap(im,cmap,c,b)
Remap data according to cmap.

renderstacksfromdicom(no)
Render image stacks in main gui. This function is typically called upon

loading.

resetguipositions
Resets GUI positions of Segment.

resetlight Callback
Activated by toolbar icon, different from contrast Callback (below).

resetlightall Callback
Activated by toolbar icon, different from contrast Callback (below).

resetpreview
Reset preview structure in DATA.Preview.

z = reshape2layout(im,no,panel,outsideelement)
Convert a 3D array to an layout:ed image with cols, and rows.

rotatetemp(alpha)
This function should late be replaced with qa tool that rotates objects,

just as scale and move does.

saveguipositiontodisk
Save guipositions to disk.

91

CHAPTER 15. UNIT IMPLEMENTATION

scale Buttondown(type,panel)
Button down function for scaling of objects / contours.

scale Buttonup(type)
Button up function for scaling.

scale Motion(reset)
Motion function for scaling.

selectallslices Callback(no)
Selects all slices in current image stack.

setcurrenttimeframe(frame)
function to set current time frame, input argument is frame to be set to

current time frame.

slowerframerate Callback
Makes movie play slower.

smoothendowall Callback(no)
Adjust the LV wall so that the thickness is more even. Adjustment is done

on the endocardial side.

stopmovie Callback
End movie display.

switchtolongaxisslice(slice,laxfield,silent)
Called when slice has changed in HLA or VLA view.

killbuttondown = switchtopanel(panel,updateimagestack)
Make panel the currentpanel.

switchtoslice(slice)
Called when current slice has changed.

If slice has changed, make sure montage/one are in sync

Does nothing if slice = CurrentSlice.

thumbnail Buttondown
Buttondown fcn for thumbnails.

thumbnail Buttonup
Buttonup fcn for thumbnails.

92

15.1. MAIN SEGMENT SUPERUNIT

thumbnail Motion
Motion fcn for thumbnails.

out = thumbnailno(in)
Helper fcn to remember what image stack were clicked.

thumbnailslider Callback(varargin)
Slider callback for thumbnail slider.

timebar Buttondown
Button down function for the time bar in the time bar graph.

timebar Motion
Update current timeframe when user clicked in time bar graph.

timebaraxes Buttondown
Called when user has clicked time bar graph, sets current

timeframe to clicked point.

timebarflow Buttondown
Button down function for the time bar in the volume graph.

timebarflow Motion
Update current timeframe when user clicked in volume graph.

timebarlv Buttondown
Button down function for the time bar in the volume graph.

timebarlv Motion
Update current timeframe when user clicked in volume graph.

unlighttool(h)
Helper function to change color of a tool to represent unselected.

unselectallslices Callback(no)
Unselects slices in current image stack.

update thumbnail(nos)
This fcn updates thumbnail no.

updateflow
calculate flow and graphically update.

93

CHAPTER 15. UNIT IMPLEMENTATION

result = updateintersections Callback(slices,no,type)
Calculates the intersection of a endocardial segmentation

and SET(no) for

slices == ’all’

or

slices == ’current’

Allowed segmenation ’type’ is ’LVEndo’ or ’RVEndo’

Calculates intersection for SET(NO) if nargin==1.

Returns false if calculations fails.

updatelvstack

updatemmode(arg,nbrofcycles)
Calculate and show mmode image.

updatemmodeline
Updates the mmode line in mmode display.

updatemmodevisibility
Updates mmode visibility.

updatemodeldisplay(˜)
Do nothing, introduced to disable excessive calls to updatemodeldisplay.

updateoneim(no)
Updates viewim for ’one view’ or ’mmodespatial’

Called when changed currentslice.

updateparallelsets
Chages CurrentSlice in SETs that are parallel to SET(NO) to the slice

closest to SET(NO).CurrentSlice

Help function to movealltowardsbase/ Callback and

movealltowardsapex Callback.

updatervstack

94

15.1. MAIN SEGMENT SUPERUNIT

updateselectedslices
Graphically updates which slices are selected.

updateslider(whattodo)
Update when user changes in thumbnail slider.

updatevolume(lvsegchanged)
Calc volume of segmentation and graphically update.

viewaddtoolbar Callback
Helper function to add a toolbar.

viewallimagestacks Callback
Displays all image stacks.

viewhideall Callback(varargin)
all hide buttons.

viewhidecolorbar Callback
Toggle visibility of colorbar.

viewhideimagestack Callback(no)
Remove clicked image stack from view panels.

viewhideinterp Callback(varargin)
Toggle visibility of contours from other image stacks.

viewhideintersections Callback(varargin)
Toggle visibility of plane intersections.

viewhidelv Callback(varargin)
Toggle visibility of lv segmentation.

viewhidemanualinteraction Callback
toogle visibility of manual interaction of Scar/MaR.

viewhidemar Callback(varargin)
Toggle visibility of MaR contours

global DATA

drawfunctions(’drawall’,DATA.ViewMatrix);.

95

CHAPTER 15. UNIT IMPLEMENTATION

viewhidemeasures Callback
Toggle visibility of measurements.

viewhideothercontour Callback(varargin)
Toggle visibility of contours from other image stacks.

viewhidepanel Callback
Hides current panel.

viewhidepap Callback
Toggle visibility of papillary overlay.

viewhidepins Callback(varargin)
Toggle visibility of pins.

viewhideplus Callback(varargin)
Toggle visibility of center +.

viewhidepoints Callback
Toggle visibility of annotation points.

viewhideroi Callback(varargin)
Toggle visibility of roi’s.

viewhiderv Callback(varargin)
Toggle visibility of rv segmentation.

viewhidescar Callback(varargin)
Toggle visibility of scar contours

global DATA.

viewhidescarextent Callback(varargin)
Toggle visibility of auto scar extent contours

global DATA.

viewhidetext Callback(varargin)
Toggle visibility of text.

viewimage Callback(type)
Select type of image to view on screen.

96

15.1. MAIN SEGMENT SUPERUNIT

viewimagestack Callback(no)
Make clicked image stack visible.

viewimagestackas Callback(mode)
Select how to view current image stack.

viewinterp Callback(val)

viewmanualinteraction Callback
Displays a GUI indicating in which slices and timeframes manual

interaction have been made for LV segmentation.

viewpandir Callback(direction)
Pans current view panel.

viewrefresh Callback
Main graphical refresh.

viewrefreshall Callback
Main refresh of GUI.

viewspecial Callback(mode)
Called to switch to predefined layouts of the GUI. Mode is current mode to

use.

viewzoomin Callback
Zooms in current view panel.

viewzoomout Callback
Zooms out in current view panel.

volumeaxes Buttondown
Called when user has clicked volume graph, sets current

timeframe to clicked point.

zoomhelper(ax,f,no,panel)
Helper function to zoom image stacks. Zooming is done by changing xlim and

ylim.

97

CHAPTER 15. UNIT IMPLEMENTATION

Functions in maingui.m

addmainicon helper(g,callback,tooltip,cdata,tag,separator)
Helper function to add an icon.

checkversion(g)
Check if new version is available. Define separately for each GUI.

cleardatalevelset(g,onlyprototype)
Clear the struct g.LevelSet properly called when switching image

stacks.

contextmenu(g)
Context menu button down / callback

Overloaded in CVQgui

Note: Can act on one slice (CurrentSlice) or range of slices

(StartSlice:EndSlice).

copyrvendoforward
Overloaded in SegmentGUI.

defaultpref(g)
Sets Pref to default values. Called by segpref(’default/ Callback’)

Overloaded in CVQgui, RVQgui, Segment CMRgui.

dispwelcometext(g)
Displays welcome text. Overloaded in CVQgui, SegmentCMR GUI.

drawroiinpanel(g,panel)
Draw ROI’s in one slice mode.

drawsectorgrid(g,no)
Overloaded in RVQ GUI.

drawvolume(g)
Draw volume curve. Overloaded in CVQgui.

enableopenfile(g)
Called by openfile(’enablesegmentgui’). Overloaded in CVQgui and RVQgui.

filecloseall Callback(g,silent)
Deletes all image stacks and resets Segment to original state.

Overloaded in CVQgui and RVQgui.

98

15.1. MAIN SEGMENT SUPERUNIT

fileopen Callback(g)
Loads a set of files as a 4D volume, and also updates preferences.

Calls the fcn openfile which displays the fileloader GUI.

Overloaded in CVQgui.

fail = filesaveallas Callback(g,pathname,filename)
Overloaded in some other GUI’s.

filename = generatesavefilename
Called by segment(’filesaveallas Callback’). Overloaded in CVQgui.

pathname = getpreferencespath(g)
Get path to preferences folder.

value = getthisframeonly(g)
Function to check thisframe onlye mode or not.

heartratezero(g, heartrateest)
React upon a heart rate read as zero from DICOM in openfile(’initset’).

iconcallbackhelper(handle,callback)
Helper function to updateicons.

handle = iconcdatahelper(handle,icondata,tiptext)
Helper function to updateicons.

[type,viewplane,technique] = imagedescription
Define the image types, image view planes and imaging techniques

written by Helen Soneson 2009-05-25

Moved by Nils Lundahl to maingui.m 2012-07-20

Overloaded in RVQ GUI.

init(g)
Create GUI.

initLogFile(g)
Initiate log file.

initbullseye
Autoselects slices with myocardium in them before GUI is opened

Overloaded in Segment CMR GUI and Segment Spect GUI.

99

CHAPTER 15. UNIT IMPLEMENTATION

initmaingui(g)
Initiates main GUI. Overloaded in most other GUI’s.

initmaintoolbar(g)
This method is overloaded in any GUI with a toolbar.

varargout = initopenfile(g)
Initializes the openfile GUI. Optional output is the fig

Called by openfile (main). Overloaded in CVQgui

#doprotect.

initreportflow(handles)
Overloaded in CVQgui.

inittoolbar(g)
Initiates toolbars. Overloaded in CVQgui.

loadguipositions(g)
Load prestored positions of GUI’s.

g = maingui(programversion)
Constructor

Initialization of Segment GUI.

ok = manualdraw Buttonup roi(no,xr,yr,slice)
Called by segment/ main(’manualdraw/ Buttonup’)

Overloaded in CVQgui and RVQgui.

measure Buttonup(g)
Button up function for measurements.

Overloaded in CVQgui.

[stri,lstr] = measureasklabel(g)
Asks for a label of a measurement.

Overloaded in CVQgui and RVQgui.

measureclearall Callback(g)
Clear all measurements.

measureclearthis Callback(g,arg)
Clear current measurement.

Overloaded in RVQgui.

100

15.1. MAIN SEGMENT SUPERUNIT

measurefontsize(g,panel,index)
Sets measure font size. Used in CVQgui.

measurerenamethis Callback(g,arg)
Rename current measurement.

Overloaded in CVQgui.

mywaitbarclose(h)
Makes it possible to overload mywaitbar behaviour.

h = mywaitbarstart(iter,stri,ignorelimit,fighandle)
Makes it possible to overload the mywaitbarstart behaviour.

h = mywaitbarupdate(h)
Makes it possible to overload mywaitbar behaviour.

normalizephaseupdate(g)
Called by segpref.m methods

Overloaded in CVQgui (different handle placement).

plotrois(g,panel,no)
Plot roi’s if existing. Overloaded in CVQgui.

point Buttondown(g,panel)
Button down function when point tool is active.

Overloaded in CVQgui.

pointshowthisframeonly Callback
Callback to make the current point visible in this time frame only.

Overloaded in CVQgui.

printthumbnailnumber(g,thumbsize)
Overloaded in RVQ GUI.

really = quit(g)
Quit segment, also ask user if he/she is sure.

Overloaded in CVQgui.

renderstacksfrommat(g)
This function displays stacks from a mat files in main gui.

Typically called upon loading;.

101

CHAPTER 15. UNIT IMPLEMENTATION

name = roilabelmenu(g,roitoname,roinamein)
Prompt name of ROI from a menu selection

Overloaded in CVQ and RVQ.

roiputroi helper(g,no,m)
Called by roi(’roiputroi/ Buttondown’)

Overloaded in CVQgui and RVQgui.

segmentclearall Callback(g,force)
Clear all segmentation, both endo and epi, lv and rv

Overloaded in CVQgui and RVQgui.

segmentclearallbutsystolediastole Callback(g)
Clears all segmentation in all timeframes but systole and disastole.

segmentclearalllv Callback(g,force)
Clear all LV segmentation, both endo and epi

Overloaded in CVQgui.

segmentclearalllvbutsystolediastole Callback(g)
Clears all LV segmentation except in systole and diastole.

Overloaded in CVQgui.

segmentclearallrv Callback(g,force)
Clear all RV segmentation, both endo and epi

Overloaded in CVQgui.

segmentclearallrvbutsystolediastole Callback(g)
Clears all RV segmentation except in systole and diastole.

Overloaded in CVQgui.

setprefhandles(g)
Called by segpref (main). Overloaded in CVQgui since uses another fig.

setthisframeonly(g,value)
Callback to set this frame only mode.

startlog(log)
Start Segment log.

stoplog
Stop Segment logging.

102

15.1. MAIN SEGMENT SUPERUNIT

switchtoimagestack(g, no,force)
This function makes no current image stack, and updates graphics.

switchtoimagestack part2(g, no)
switchtoimagestack continued. Overloaded in SegmentGUI and CVQgui.

thisframeonly Callback(g,thisframeonly,silent)
Sets segment in ’this frame only’ mode. Changes made to segmentation,

copying etc are performed only for the current timeframe.

togglescar(g)
Called by segment(’updateviewicons’). Overloaded in CVQgui.

updateaxestables(g, arg, varargin)
Method to update AxesTables, in GUIs where present.

updateedes
Overloaded in CVQgui.

updateicons(g,mode)
Updates icons when new mode is selected.

Overloaded in CVQgui, RVQgui and Segment CMR GUI

If making major changes, make sure to

update csegment(’updateicons’)!!! /JU.

updateprefhandles(g)
Updates PrefHandles. Called by segpref(’update’)

Overloaded in CVQgui and RVQgui.

Default folder locations.

updateprefhandlesadvanced(g)
Called by segpref(’updateadvanced’). Overloaded in SegmentGUI and

RVQGUI.

updatetimethings(g,no,mode)
This fcn is called from switchimagestack and disables/enables

features that are not available depending of the image stack is

timeresolved or not.

Overloaded in CVQgui.

updatetitle(g)
Updates titleline of main GUI. Overloaded in CVQgui.

updatevolumeaxes(g)
Called by segment main(’updatevolume’).

versionhello
Versionhello, overloaded in CVQgui, RVQ, SegmentTransfer...

103

CHAPTER 15. UNIT IMPLEMENTATION

Functions in segmentgui.m

checkversion(g)
Check if new version is available.

copyrvendoforward
Overloads empty method in maingui.

failedaborted(g)
Message when a function is aborted.

initmaintoolbar(g)
Intialization of main toolbar

If new handles are added, add those to list in killhandles.m as well!.

licensemsg(m)
Display license message.

g = segmentgui(programversion)
Constructor.

tip = singleframetip
Return tip for single frame mode.

switchtoimagestack part2(g, no)
switchtoimagestack continued. Overloads method in maingui.

updateicons(g,mode)
Update icons when new mode is selected

Overloads main GUI method.

updateprefhandlesadvanced(g)
Make update of handles in advanced preferences GUI.

out = viabilityallowweighted
Return whether to allow weighted viability mode.

Functions in maingui.m

defaultpref(g)
Sets Pref to default values. Overloads method in main GUI.

104

15.1. MAIN SEGMENT SUPERUNIT

dispwelcometext(g)
Displays welcome text. Overloaded in CVQgui, SegmentCMR GUI.

fileopen Callback(g)
Loads a set of files as a 4D volume, and also updates preferences.

Calls the fcn openfile which displays the fileloader GUI.

Overloaded in CVQgui.

filesaveallas Callback(g,pathname,filename,˜)
savetodatabase=true;

//%here should be a switch-case clause on set preferences for save to

/%local disk or patientdatabase

if savetodatabase.

initLogFile(g)
Initiate log file. Overloads main GUI method.

initbullseye
Autoselects slices with myocardium in them before GUI is opened.

initmaingui(g)
Initiates main GUI. Overload SegmentGUI method to use CMR gui instead.

initmaintoolbar(g)
Intialization of main toolbar

If new handles are added, add these to list in killhandles.m as well!.

inittoolbar(g)
Initiates toolbars.

Create menubar.

licensemsg(˜)
Overloads SegmentGUI method.

g = segmentmrgui(programversion)
Constructor.

tip = singleframetip
Return tip for single frame mode.

updateicons(g,mode)
Updates icons when new mode is selected.

Overloads method in main GUI

If making major changes, make sure to

update csegment(’updateicons’)!!! /JU.

out = viabilityallowweighted
Return whether to allow weighted viability mode.

105

CHAPTER 15. UNIT IMPLEMENTATION

15.2 Draw superunit

The purpose of the draw unit is to perform all graphical update of image
panels in Segment.

Interactions

This unit calls the Calculation superunits to help calculate some of the details
that are to be drawn.

Datastructure

The functions uses the SET structure, and the fields .rows and .cols are
especially important since they contain the number of panels.

Other important data structure are in the DATA object.

1. ViewIM contains a cell array of preprocessed images ready to be dis-
played. One for each available image panel. The images are either
RGB images or uint8 images that goes to grayscale mapping.

2. ViewMatrix contains the number of image panels available on the
screen in the current view mode.

3. ViewPanels a vector that linkes to the image stack number for each
panel. For non active panels the number is zero.

4. ViewPanelsType a cell array with the type of each image panel.

Functions

bupdate
Update blue image.

s = cellref(a,varargin)
Returns vector of content of e(varargin), for all elements e of cell a.

corspeed view
This function initiates the coronal and speed image segment 3DP view.

displaypoints(view,ima)

106

15.2. DRAW SUPERUNIT

draw3dpimage(no,panel)

drawall(n,m)
Draws all panels that should be visible or up to the number specified as n.

If called with n=[], then lookup from imagepanels

When n,m specified draw n*m panels.

drawallslices
This fcn updates graphics in all visible image panels.

drawannotationpoints(no,panel)
Draw annotation points, if available.

drawcolorbar(panel)
Draw color bar in an image panel.

drawcontours(no,panel)
Initiate handles and draw endo- and epicardial contours of the LV and RV.

drawcontrastimage(no)
draws contrast image.

drawimagehlavla(panel,viashow,marshow,olshow)
Main workhorse for creating view of one image slice.

- viashow is whether to show viability

- marshow is whether to show MaR

- olshow is whether to show overlays or not.

drawimagemmode(no,panel)
Draw temporal mmode view.

drawimagemontage(panel,viashow,marshow)
Main workhorse for creating montage view.

- viashow is if viability data should be updated.

- marshow is if MaR data should be updated.

drawimageno(no)
Call drawimagepanel for the panels that contain no including flow

panels. If no is not specified then the current image stack NO is

used. This function is typically called when new objects have been

created or modified.

107

CHAPTER 15. UNIT IMPLEMENTATION

drawimageone(panel,viashow,marshow,olshow)
Main workhorse for creating view of one image slice.

- viashow is whether to show viability

- marshow is whether to show MaR

- olshow is whether to show overlays or not.

drawimagepanel(panel)
Draws selected panels, used upon loading or when when major

changes have occured such as change of slice, added measurement

points etc. This fcn is the true workhorse in graphics etc.

drawimagetypetext(no,pno,panel)

drawimageview(nos,sz,panelstype)
Draws a full view specified by the arguments.

drawintensitymapping
Draws intensity mapping curve and add gray colorbar.

drawinterp(no,panel,olshow)
Initiate handles and draw interpolation points.

Do not work well with overlays.

drawintersectionpoints(no,panel)
Initiate handles and draw intersections with other contours.

drawintersections
Draw intersections between image visible stacks. Uses

calcplaneintersection to calculate intersection lines.

This function respects view settings.

drawmapping
Prepare the mapping area for drawing.

drawmarhelper(no,panel)
Function to draw MaR contour on screeen used from drawimageslice,

drawimagemontage.

drawmeasures(no,panel)
Draw measurements, if available.

108

15.2. DRAW SUPERUNIT

drawmontagecontours(no,panel)
Initiate handles and draw contours for montage view.

drawmontageimagetypetext(no,pno,panel)
Initiate handles and draw image type text.

drawmontageinterp(no,panel)
Initiate handles and draw interpolation points for montage view.

drawmontagemeasures(no,panel)
Initiate handles and draw measurements for montage view.

drawmontagepins(no,panel)
Initiate handles and draw pins for montage view.

drawmontagepoints(no,panel)
Initiate handles and draw annotation points for montage view.

drawpins(no,panel)
Initiate handles and draw pins.

drawsliceno(no)
Call updatenopanels.

drawthumbnailframes
Draw frames around thumbnail images.

drawthumbnails(calculatepreview,sliderupdated)
Draw all thumbnails. Calculatepreview is a boolean

indicating if thumbnails needs to be redrawn.

drawviabilityhelper(no,panel)
Function to draw viability contour on screeen used from drawimageslice,

drawimagemontage.

im = getimage(view)
Get image for view given imageorientation, r = transversal, g = sagittal,

b=coronal.

im = getimagehelper(vol,view)
Similar as getimage, but do assme no TSize as stored locally in BW.

109

CHAPTER 15. UNIT IMPLEMENTATION

im = getoverlayimage(view,useroverlay)
Get image including overlay, view is either of ’r’,’g’,’b’.

gupdate
Update green image.

imrgb = levelsetremapandoverlay(im,bw,man)

lineupdate3dp

outlinedraw3dp(type)

rupdate
Update ’red’ image.

sagspeed view
This function initiates the sagittal and speed image Segment 3DP view.

sdraw
Draw / initialize the speed part.

showedits(no)
Show edits (overlays) of scar and mar if current mode.

showmaredits(no)
Show MaR edits on screen as a temporary overlay.

showviabilityedits(no)
Show viability edits on screen as a temporary overlay.

supdate

supdatemotion
Update speed image, only single slice and from mapping, used by

speedpointmotion fncs.

transspeed view
This function initiates the transversal and speed image Segment 3DP view.

110

15.2. DRAW SUPERUNIT

tssc view
This function initiates the transversal and speed image Segment 3DP view.

updateannotationpoints(no,panel)
Update coordinates of annotation point handles.

updatecontours(no,panel)
Update coordinates of contour handles of one view panels.

updateglazoomstate(no,ysz)

updateinterp(no,panel)
Update coordinates of interpolation point handles.

updateintersectionpoints(panel)
Draw intersection with segmentation in other image stacks.

updatelongaxiscontours(arg,no,panel)
Update coordinates of contour handles for HLA or VLA image view.

updatemapping
update the mapping graphically.

updatemeasures(no,panel)
Update coordinates of measurement handles.

updatemodeldisplay(no,panel)
Update data used to correctly display segmentation in montage view. This

fcn needs to be called when the segmentation has changed.

updatemontagecontours(no,panel)
Update coordinates of contour handles for montage image view.

updatemontageinterp(no,panel)
Update coordinates of interpolation point handles for montage view.

updatemontagemeasures(no,panel)
Update coordinates of measurement handles, for montage view.

updatemontagepins(no,panel)
Update coordinates of pin handles for montage view.

111

CHAPTER 15. UNIT IMPLEMENTATION

updatemontagepoints(no,panel)
Update coordinates of annotation point handles for montage view.

updatemontagerois(no,panel)
Update coordnates of ROI handles for montage view.

updatenopanels(no,stateandicon)
Update panels containing image stack no.

updatepins(no,panel)
Update coordinates of pin handles.

updaterois(no,panel)
Update coordinates of ROI handles.

updatesax3contours(no,panel)
Update coordinates of contour handles for SAX3 image view.

updatevisibility
Make sure visibility of handles correspond to status of hide/show icons.

viewupdateannotext(panel)
Updates the visibility of point/measurement text.

Respects hideX settings.

If point is inbound, pointtext is visible.

If measurementtext is inbound, measurementtext is visible.

If whole ROI is inbound, place XXXX

If only some of ROI is inbound, place at any inbound point

If whole ROI is outside, make ROItext not visible.

viewupdatetextposition(panel)
Updates the location of the corner text, to always stay still.

From drawx(), it is called panelwise, since the linked panels aren’t

ready when the first panel is drawn. From other situations, it is called

without arguements, and handles the linkage by itself. /JU.

15.3 Calculation superunit

The purpose of the calculation unit is to provide general functionality in
the Segment platform. This also prevents from code duplication of core
functionality such as calculation of volumes.

112

15.3. CALCULATION SUPERUNIT

Interactions

Calls to other superunits are negligible.

Datastructure

The calculation tools uses the SET struct and sometimes also use the global
variable NO for indicating current image stack.

Functions

bsa = calcbsa(weight,height)
Calculates BSA. Formula based on Mosteller

weight in kilo and height in cm.

calcdatasetpreview
Calculate thumbnails. They are stored in the variable

DATA.DATASETPREVIEW. Size of the thumbnails is given by

DATA.GUISettings.ThumbnailSize. It is stored as a RGB image.

rad = calcendoradius(no)
Calculates endocardial radius. Respects setting in preferences

if to use endocardial or epicardial center as reference. Loops

over timeframes and slices.

rad = calcepiradius(no)
Calculates epicardial radius. Respects setting if to use

endocardial or epicardial center in calculation. Loops over

timeframes and slices.

calcflow(no)
calculates flow from ROIs.

[meanint,defectextent,varargout] = calcintensityanddefect(im,...
tf,numpoints,numsectors,nprofiles,pos, ...

no,endox,endoy,epix,epiy,sz,resolution,defect,numwidth,timeresolved)
Calculates the mean intensity within sectors as a preperation to

generate a bullseye plot.

-im image

-tf timeframe

113

CHAPTER 15. UNIT IMPLEMENTATION

-numpoint numpoints to evaluate in

- numsectors: number of sectors

- nprofiles: number of profiles

- pos: slices to use

- endox,endoy,epix,epiy: myocardial borders

sz: size of image stack

resolution: resolution of image stack

defect: (EH: I do not know what it is, works if empty)

numwidth: specify if it should calculate several sectors across

wallthickness. If a scalar it

specifices the number of

layers in the myocardium. If a

two element vector assumes

endo and epi percentages cut.

timeresolved: true if timeresolvde.

varargout = calclvvolume(no,docomp)
Calculate LV volume. Docomp if to use longaxis motion, see below.

Uses area*(thickness+slicedist)

NOTE: the exported LVM do NOT include Papillary volume (PV).

calclvvolumepolar(no)
Calculate volume of lv when rotated image stacks.

no is the imsage stack. The LV volume calculation includes

longaxis compensation taken from the setting in the GUI and

stored in the SET structure.

[mantelarea, sliceMantelArea] = calcmantelarea(no)
Calculate the mantel area in cm2̂ of the LV endocardium in each timeframe.

[spacedist,timedist] = calcmmodedists(no)
Calculate distances in space and time between mmode lines.

[outim,slicestoinclude] = calcmontageviewim(no,matrix,segmentedonly,cmap,c,b,im,tfs,oneextraslice,slices)
Calculate view image for montage view.

[linex,liney] = calcmontageviewline(no,matrix,inputx,inputy,tf,segmentedonly,tfs,oneextraslice)
Calculate view lines for montage view.

res = calcmyocardvolume(numsectors,no,tf)
Calculate myocardvolume. numsectors is the number

of sectors to calculate in, and no is the image stack.

uses findinmeansectorslice to do some of the calculation.

114

15.3. CALCULATION SUPERUNIT

[xofs,yofs] = calcoffset(z,type,no,panel)
Calculate offset required to plot coordinates in viewing

mode specified by type.

[cellx,celly] = calcoffsetcells(no,panel,type)
Same as calculateoffset, but returns cells, used in

updatemodeldisplay.

[impos,ormat] = calcormat(no)
Calculate orientation matrix for stack number no

Can be used for coordinate transformations:

RLAPFH = impos + ormat * (XYZ - 1)

XYZ = ormat / (RLAPFH - impos) + 1.

[x,y] = calcplaneintersections(NO,no,TYPE,type,slice,hslice)
Calculate intersections between image planes.

NO is the viewed plane

no is the (potentially) intersecting plane

TYPE is the viewtype of the viewed plane

type is the viewtype of the intersecting plane

slice is the slice of the intersecting plane

hslice is the horizontal slice of the viewed plane (if derived longaxis).

radvel = calcradialvelocity(no)
Calculate radial velocity of the endocardium.

Forward difference is used.

[meanarea,area] = calcroiarea(no,roino,thisframeonly)
Calculates roi area (helper fcn).

[m,sd,rmin,rmax] = calcroiintensity(no,roino,normalize,thisframeonly)
Calculates intensity within a ROI (helper fcn).

[rows,cols] = calcrowscols(no,z)
Calculate a good montage setup, so maxiumum number of slices

can be displayed on the screen.

[varargout] = calcrvvolume(no)
Calculate RV volume. no is the image stack.

The RV volume calculation does not involve any longaxis

compensation.

115

CHAPTER 15. UNIT IMPLEMENTATION

calcrvvolumepolar(no)
Calculate RV volume when rotated image stacks.

[xout,yout] = calcsegmentationintersections(no,type,viewtype)
Calculates intersections between segmentation in image stacks.

no is image stack and type is endo or epi, can also be rvendo etc.

the type is a string that dynamically calls a field of the SET struct.

ticks = calcticks(num,res)
Helper fcn to calculate length of ticks in volumegraph.

z = calctruedata(im,no)
Calculate true image intensities (as before Segment internal

normalization). Uses IntensityScaling and IntensityOffset stored

in SET structure. im is input image, and no is image stack,

where to take the scaling from.

calcvolume(no)
Calculate volume of segmentation and updates. Updates both

lv and rv segmentation. Calls subfunctions to do the work.

[wallthickness,endox,endoy,epix,epiy] = calcwallthickness(sectors,no)
Calculate wallthickness. Uses calcendoradius and calcepiradius

to do the work.

clearallflow(no)
clear all ROI flow from no.

clearflow(no,roinbr)
clear ROI flow from ROI with roinbr.

[window,level] = con2win(contrast,brightness,no)
Convert from contrast to window and level.

[x,y,z] = cyl2cart(xin,yin,slice,numslices,rotationcenter)
Convert from cylindrical to cartesian coordinates.

z = econvn(im,f)
Function to filter image, uses fastest available convolver.

[res,varargout] = findmeaninsector(type,inp,pos,numsectors,no,tf)
Find indicies of points along the contour that corresponds to which

sector. Then also calculated mean values of the input inp.

116

15.3. CALCULATION SUPERUNIT

[varargout] = findmeaninsectorslice(type,numpoints,tf,slice,...
numsectors,no,endox,endoy,epix,epiy,rotation)

Find indicies of points along the contour that corresponds to which

sector. Used when analysing the myocardium of short axis slices. Operates

on given slice.

[pos,xdir,ydir,zdir] = getimageposandorientation(no,slice,type)
Return image orientation for current slice or second input argument.

If two outputvariables, then zdir is also outputed.

[x,y,z] = gla2sax(xi,yi,no)
Convert image coordinates from GLA to short-axis view.

[N,xc,yc,zc] = lsplanefit(x,y,z)
This function calculates the plane least squares fit to the points given by the

x,y,z coordinates. It uses the null space of a matrix formulation of the .

[edmax, MaxLVdiameterPoint, Zslice no] = maxsaxdiameter(no,tf,type)
Get maximum endocardial diameter in short-axis cine stack

Input: no - no of stack,

tf - time frame,

type - ’RV’, ’LV’

Output: edmax - max LV diameter

MaxLVdiameterPoint - points with the largest distance in form [x,y]

Zslice/ no - slice number with largest LV diameter.

z = remapuint8(varargin)
Same as remapuint8viewim, but squeezes result to make sure it can be

viewed other than in the main window.

z = remapuint8viewim(im,no,tempmap,c,b)
If SET(no).Colormap exists:

Remap from image data to true color using color lookup.

If not:

Remap according to indexed grayscape

Unless:

An external colormap has been supplied, then use that.

This is used to force truecolor grayscale, by passing

true to RETURNMAPPING.

c,b are contrast/brightness settings, used by contrast/// Callback when

doing realtime update during mouse motion.

See RETURNMAPPING above.

117

CHAPTER 15. UNIT IMPLEMENTATION

[xnew,ynew] = resampleclosedcurve(x,y,n,method,distributed)
General helper fcn to resample a closed curve.

[xnew,ynew] = resamplemodel(x,y,n,method,distributed)
Resample the a stack of contours (typically segmentation)

to different number of points (n).

map = returnmapping(no,forcetruecolor)
If SET(no).Colormap exists:

Returns truecolor colormap for this.

If not:

Returns grayscale 1-D indexcolor map.

Unless:

forcetruecolor is true, then 3-D truecolor grayscale is returned,

regardless of SET(no).Colormap

See REMAPUINT8 below.

[pos] = rlapfh2xyz(no,rl,ap,fh)
Convert from RL,AP,FH coordinates to Segment internal coordinate system.

[x,y] = sax2gla(xi,yi,zi,no)
Convert image coordinates from short-axis to GLA view.

im = truedata2im(z,no)
Inverse of calctruedata.

volume helper(no)
Helper to find peak ejection, and empty volumes etc.

Lots of checks to prevent NaN or Inf to be presented

when some of the data are missing.

[contrast,brightness] = win2con(window,level,no)
Inverse of con2win.

[pos] = xyz2rlapfh(no,x,y,z)
Converts from segment coordinate system to RL,AP,FH coordinate system.

15.4 Helper functions superunit

This superunit contains functions that are frequently used to provide other
functions with basic information about the state of Segment.

118

15.4. HELPER FUNCTIONS SUPERUNIT

15.4.1 Find unit

The purpose of the Find unit is to contain functions that assist other func-
tions in finding requested image stacks or slices.

Interactions

Calls to other superunits are negligible.

Datastructure

The Find unit tools use the SET struct to look for information that is relevant
to determining stack/slice content.

Functions

cineshortaxisno = findcineshortaxisno(multiple)
Find one [LV] or two [LV and RV] cine short axis stack.

ind = findclosestannotationpoint(x,y,z)
Finds the index of the annotation point closest to the coordinates (x,y,z).

z = findcorrespondingslice(thisno,otherno,slice)
Find slice in otherno stack based on slice in thisno.

saxno = findctsaxwithsegmentation(type)
Code for finding ct sax image stack with endosegmentation.

shortaxisno = findctshortaxisno(multiple)
Find one [LV] or two [LV and RV] CT short axis stack.

transno = findcttransversalwithendo(type)
Code for finding ct transversal image stack with endosegmentation.

[flowno,flowroi] = findflowaxisno(flowno)
Find only one flow image stack.

tfs = findframeswithsegmentation(type,no)
Find timeframes in no containing segmentation of type.

LAX group = findlaxset

119

CHAPTER 15. UNIT IMPLEMENTATION

[x,y] = findlvcenter(no,slices)
Finds the center of the LV, uses the autocrop function as a helper

function.

marno = findmarshortaxisno
Find only one mar shortaxis stack.

[cineno,scarno,flowno,strainno,marno,varargout] = findno
Find matching image stacks output

normalno (normal short axis stack or closest equivalent)

scarno (viability short axis stacks)

flowno (flow image stack(s))

marno (stacks with MaR)

[stress] stress images

Note that all scarno for instance is not garanteed to have non empty

SET.Scar.

[ind] = findoutflowtractslices(no,tfs)
Find slices with outflow tract (a wall thickness that is less than 2mm)

tfs are the timeframes to search in.

[x,y] = findrvcenter(no,slices)
Finds the center of the RV, currenlty only using center cross definition.

scarno = findscarshortaxisno
Find only one scar shortaxis stack.

ind = findslicewithendo(no,tfs)
Find slices with endocard in any timeframe.

ind = findslicewithendoall(no)
Find slices with endocard in all timeframes.

ind = findslicewithepi(no,tfs)
Find slices with endocard in any timeframe.

ind = findslicewithepiall(no)
Find slices with endocard in all timeframes.

ind = findslicewithmarall(no)
Find and return slices with mar.

120

15.4. HELPER FUNCTIONS SUPERUNIT

ind = findslicewithrvendo(no,tfs)
Find slices with RV endocard in any timeframe.

ind = findslicewithrvendoall(no)
Find slices with RV endocard in all timeframes.

ind = findslicewithrvepi(no)
Find slices with RV epicard in any timeframe.

ind = findslicewithrvepiall(no)
Find slices with RV endocard in all timeframes.

ind = findslicewithscarall(no)
Find and return slices with scar.

shortaxisno = findspectshortaxisno(multiple)
Find one [LV] or two [LV and RV] CT short axis stack.

no = findstack(label)
Finds the stacks with a specific ImageType or ImageViewPlane

label: string with the ImageType or ImageViewPlane name sought

no=the stacks with ImageType or ImageViewPlane to the corresponding label.

setstack Callback(type)
open interface for user to manually define LV/RV/Flow image stack.

15.4.2 Exist unit

The purpose of the Exist unit is to contain functions that assist other func-
tions in determining whether some segmentation content exists in a given
slice or stack.

Interactions

Calls to other superunits are negligible. This unit is commonly used in the
test script in order to check if operations have been successful.

Datastructure

The Exist unit tools search the SET struct for existence of requested infor-
mation.

121

CHAPTER 15. UNIT IMPLEMENTATION

Functions

z = anyall(a)
Equivalent to z = any(a(:));.

y = existendo(no)
True if endocardium exist in some slices.

y = existendoinselected(no,t,s)
True if endocardium exists in selected slices.

If argument is specified, only look in timeframe t.

y = existendoinslices(no,t)
True for the slices where endocardium exists.

If argument is specified, only look in timeframe t, oterwise look if there

is endocardium in any time frame.

y = existendoonlyinedes(no)
True if endocardium exists in ED and ES slices.

y = existepi(no)
True if epicardium exist in some slices.

y = existepiinselected(no,t,s)
True if epicardium exist in selected slices.

If argument is specified, only look in timeframe t.

y = existepiinslices(no,t)
True for the slices where endocardium exists.

If argument is specified, only look in timeframe t, oterwise look if there

is endocardium in any time frame.

y = existepionlyinedes(no)
True if epicardium exists in ED and ES slices.

y = existrvendoinselected(no)
True if RV exist in selected slices.

y = existrvendoonlyinedes(no)
True if RV endocardium exists in ED and ES slices.

y = existrvepionlyinedes(no)
True if RV epicardium exists in ED and ES slices.

122

15.4. HELPER FUNCTIONS SUPERUNIT

15.4.3 Input/Output unit

This unit consits of functions that are internal helper functions in Segment.

Interactions

Interactions are minimal.

Datastructure

Not applicable.

Functions

15.4.4 myadjust.m

MYADJUST objecthandle and fighandle/mygui object.

Adjust so that a message box gets to the correct screen.

fighandle is a figure handle

15.4.5 mybrowser.m

MYBROWSER(URL) Opens an URL platform independent.

15.4.6 mycat.m

15.4.7 mycopyfile.m

MYCOPYFILE Copies a file from source to dest

MYCOPYFILE(SOURCE,DEST)

Should be platform independent and faster than making a system

call. If really large files are used then do a system call instead.

Essentially a wrapper to COPYFILE, kept for naming consistency.

See also MYDEL, MYMKDIR.

123

CHAPTER 15. UNIT IMPLEMENTATION

15.4.8 mycountunique.m

MYCOUNTUNIQUE counts the number unique elements in the input vector.

N = MYCOUNTUNIQUE(V,<tol>)

N is the number of unique elements

V is numeric input vector

tol is numeric tolerance, if omitted then set 1e-6.

See also matlab builtin unique.

15.4.9 mydel.m

MYDEL Delete file from disk

[OK] = MYDEL(filename)

Should be platform independent.

See also MYCOPY, RECYCLE.

15.4.10 mydir.m

MYDIR Extracts directory information.

. and .. are always first on the list

thumbs.cache,folders.cache,dicomdir excluded.

folders comes first

15.4.11 mydisp.m

Internal display function

15.4.12 mydispexception.m

MYDISPEXCEPTION(ME) Pretty prints a caught

exception for debugging. ME is matlab error struct

caught in a try catch clause.

See documentation on try and catch syntax.

124

15.4. HELPER FUNCTIONS SUPERUNIT

15.4.13 myecgreader.m

15.4.14 myexecutableext.m

MYEXECUTABLEEXT Returns proper file extension for exectutables.

See also, MYREQUIREPC, MYMKDIR, MYMOVEFILE, MYCOPYFILE, MYDEL, MYDIR.

15.4.15 myfailed.m

MYFAILED(STRI,FIGHANDLE)

Displays an error message STRI. FIGHANDLE is

an optional alignment indicating alignment.

Difference to errordlg is the alignment and

possibility to hit return to okey the message.

Alignment string may be a fig handle or an MYGUI object.

See also MYWARNING, MYMSGBOX, MYADJUST, MYWAITBARSTART.

15.4.16 mygetcurrentpoint.m

Returns CurrentPoint of an axes h. In case of macro or testing, returns

current point from buffer.

15.4.17 mygetedit.m

Get string from an edit box. Use this instead of get(h,’String’) to make

macro evaluation possible.

15.4.18 mygetframe.m

Same as getframe, but with error checking for multiple screens

Also makes sure that the frame is visible on screen

Einar Heiberg

15.4.19 mygetlistbox.m

Get value from a listbox handle. Used instead of normal get to also be able

to use macros in Segment.

125

CHAPTER 15. UNIT IMPLEMENTATION

15.4.20 mygetnumber.m

Input dialog function that get a scalar value.

Syntax

MYGETNUMBER(STRI,DEFAULT,MIN,MAX)

Where:

- PROMPTSTRI prompt for dialog.

- TITLESTRI title of dialog box.

- DEFAULT is default value.

- <MIN>, optional minimal value.

- <MAX>, optional maximal value.

15.4.21 mygetslider.m

Get value from a slider handle. Used instead of normal get to also be able

to use macros in Segment.

15.4.22 mygetvalue.m

Get value from a slider handle. Used instead of normal get to also be able

to use macros in Segment.

15.4.23 mygui.m

MYGUI Class for handeling GUI’s in a efficeint manner

G = MYGUI(FIGFILENAME,<’BLOCKING’>);

The purpose of this class is to facilitate to generate

GUI’s than can also work as a temporary containter data

for that so that data transfer between subfunctions becomes

simple. If blocking is specified then segment internal blocking

figure mechanism will be used.

The function also keeps track of position for the gui to

be saved later and to be able to set position of messageboxes,

called with for example mywarning, mymsgbox and yesno when

calling with last input argument as the mygui object.

126

15.4. HELPER FUNCTIONS SUPERUNIT

Example:

First, reserve space for it in DATA Structure:

DATA.GUI.MyGUIExample = []; \%in segment.m

In your code to initialize:

gui = mygui(’myguiexample.fig’);

In your subfunctions:

global DATA

gui = DATA.GUI.MyGuiExample;

Now you can use gui as an ordinary variable, and everthing

is stored in the GUI, and will be available to other

subfunctions until the GUI is deleted. Some examples:

gui.myfieldname = somearray;

gui.myfieldname1.myfieldname2.myfieldname3 = 134;

temp = gui.myfieldname(2);

temp = get(gui.handles.text2,’string’);

You can also use the gui to get good alignment of the

msgboxes mywarning, myfaield, mymsgbox, mymenu, mywaitbarstart and yesno.

myfailed(’An error has occured.’,gui);

When closing the gui the close function can be called with

DATA.GUI.MyGUIExample=close(DATA.GUI.MyGUIExample);

when closing by using this syntax the position of the gui

will be saved in the struct DATA.GUIPositions

The position of the gui can also by saved by

saveguiposition(gui);

this could be used in a resize function

See also SUBSREF, SUBSASGN.

127

CHAPTER 15. UNIT IMPLEMENTATION

15.4.24 myguide.m

MYGUIDE Same as GUIDE, but can also open .fig files located in package

directories without having to change directory manually

15.4.25 myicon.m

MYICON add icon to MYICONPLACEHOLDER

Constructor takes (axes,image,text,exestring,dentstick (Says if the button stays indented afterpress),indentimage)

Klas Berggren and Einar Heiberg

15.4.26 myiconplaceholder.m

MYICONPLACEHOLDER Class to handle icons

15.4.27 mymaximize.m

MYMAXIMIZE(HANDLE) Maximizes a figure or a mygui object

and aligns it to correct monitor.

15.4.28 mymenu.m

m = MYMENU(header,options,defaultstring)

m = MYMENU(header,item1,item2,item3,...)

Same as menu, but with the following additions:

- more elegant! uses keyboard to select items.

- modal display

- can use default string

- last optional argument is figure handle

15.4.29 mymkdir.m

MYMKDIR(NEWDIR)

[SUCESS] = MYMKDIR(NEWDIR)

Make directory, difference to MKDIR is that

is does not issue an error message

if the folder already exists.

See also MYCOPY, MKDIR

128

15.4. HELPER FUNCTIONS SUPERUNIT

15.4.30 mymovefile.m

[STATUS,MESSAGE,MESSAGEID] = MOVEFILE(SOURCE,DESTINATION,MODE)

moves the file in source to dest.

Essentially a wrapper for MOVEFILE, kept for naming consistency.

See also MYCOPYFILE, MOVEFILE.

15.4.31 mymsgbox.m

MYMSGBOX Helper function, works as MSGBOX

MYMSGBOX(STRI,TITLE,[ALIGNMENT])

STRI String to display

TITLE Title of messagebox

FIGHANDLE Optional figure handle indicating alignment

See also MYWARNING, MYMSGBOX, MYADJUST, MYWAITBARSTART.

15.4.32 mynanmean.m

NANMEAN Mean value, ignoring NaNs.

The same function as Matlabs inbuild function nanmean (duplicated to not

need statistical toolbox)

M = NANMEAN(X) returns the sample mean of X, treating NaNs as missing

values. For vector input, M is the mean value of the non-NaN elements

in X. For matrix input, M is a row vector containing the mean value of

non-NaN elements in each column. For N-D arrays, NANMEAN operates

along the first non-singleton dimension.

NANMEAN(X,DIM) takes the mean along dimension DIM of X.

15.4.33 mypoly2cw.m

Finds clockwise orientation of segmentation

Written by Klas.

15.4.34 myrequirepc.m

Z = MYREQUIREPC Returns true if PC platform.

If not PC platform, then an error messsage is

129

CHAPTER 15. UNIT IMPLEMENTATION

displayed. Used to block certain functions

that is not implemented for other platforms

than PC.

15.4.35 myset.m

MYSET Same as SET, but removes NaN’s in the handles.

15.4.36 mystubfailed.m

Displays generic error message from stubs

15.4.37 myuigetdir.m

[PATHNAME,OK] = MYUIGETDIR(PATHNAME,TITLESTRI)

Corresponding to uigetdir, but also fixes macro recording and test

scripts.

15.4.38 myuigetfile.m

[FILENAME, PATHNAME, FILTERINDEX,OK] = MYUIGETFILE(FILTERSPEC, TITLE)

Corresponding to uigetfile, but also fixes macro recording and test

scripts.

15.4.39 myuiputfile.m

[FILENAME, PATHNAME, FILTERINDEX,OK] = MYUIPUTFILE(FILTERSPEC, TITLE)

Corresponding to uiputfile, but also fixes macro recording and test

scripts.

15.4.40 myurlread.m

S = MYURLREAD(’URL’,timeout) reads the content at a URL into a string, S. If the

server returns binary data, the string will contain garbage.

S = MYURLREAD(’URL’,timeout,’method’,PARAMS) passes information to the server as

part of the request. The ’method’ can be ’get’, or ’post’ and PARAMS is a

cell array of param/value pairs.

[S,STATUS] = MYURLREAD(...) catches any errors and returns 1 if the file

downloaded successfully and 0 otherwise.

130

15.4. HELPER FUNCTIONS SUPERUNIT

Same as URLREAD, except that it adds two timeout settings

15.4.41 mywaitbarclose.m

MYWAITBARCLOSE

Closes a mywaitbar structure, and removes waitbar.

See also MYWAITBARSTART, MYWAITBARUPDATE.

15.4.42 mywaitbarmainclose.m

MYWAITBARCLOSE

Closes a mywaitbar structure, and removes waitbar.

See also MYWAITBARSTART, MYWAITBARUPDATE.

15.4.43 mywaitbarmainstart.m

H = MYWAITBARSTART(NUMITERATIONS,STRING,[IGNORELIMIT],FIGHANDLE)

Similar to waitbar, but first input argument is

the total number of iterations that will be performed.

Second input argument is string that will be displayed,

and third optional argument is a limit that if fewer

iterations that this is performed, then there will be

no graphical output. Another difference to standard waitbar

is that no more than 20 graphical steps are displayed to

minimize CPU consumption. Function returns a handle to a

MYWAITBAROBJECT. FIGHANDLE is optional and indicates alignment

See also MYWAITBARUPDATE, MYWAITBARCLOSE.

15.4.44 mywaitbarmainupdate.m

H = MYWAITBARDATE(H)

Update a mywaitbarstructure, and increment

counter one step. Graphic is updated depends on

131

CHAPTER 15. UNIT IMPLEMENTATION

setting when intializing the structure.

See also MYWAITBARSTART, MYWAITBARCLOSE.

15.4.45 mywaitbarstart.m

H = MYWAITBARSTART(NUMITERATIONS,STRING,[IGNORELIMIT],FIGHANDLE)

Similar to waitbar, but first input argument is

the total number of iterations that will be performed.

Second input argument is string that will be displayed,

and third optional argument is a limit that if fewer

iterations that this is performed, then there will be

no graphical output. Another difference to standard waitbar

is that no more than 20 graphical steps are displayed to

minimize CPU consumption. Function returns a handle to a

MYWAITBAROBJECT. FIGHANDLE is optional and indicates alignment

See also MYWAITBARUPDATE, MYWAITBARCLOSE.

15.4.46 mywaitbarupdate.m

H = MYWAITBARDATE(H)

Update a mywaitbarstructure, and increment

counter one step. Graphic is updated depends on

setting when intializing the structure.

See also MYWAITBARSTART, MYWAITBARCLOSE.

15.4.47 mywarning.m

MYWARNING(STRI,HANDLE) Displays a warning message

User needs to click OK to discard message.

See also MYWARNINGNOBLOCK

15.4.48 mywarningnoblock.m

MYWARNING(STRI,HANDLE) Displays a warning message

132

15.5. REPORT SUPERUNIT

User needs to click OK to discard message.

See also MYWARNINGNOBLOCK

15.4.49 myworkoff.m

MYWORKOFF Graphically show that calculation is

finished by restoring pointer.

15.4.50 myworkon.m

MYWORKON Graphically indicate that Segment is

busy by showing watch pointer.

15.5 Report superunit

The Report superunit contains functions that report data to the user. Some
of these functions are of higher order and use others to extract data to be
used as a subreport. An overview of the units and how they communicate is
provided in Figure 4.

15.5.1 Report 3D unit

The purpose of the Report 3D unit is to do 3D model reports.

Interactions

The Export unit is called for export of data.

Datastructure

The information used to build a 3D model is contained in SET struct. Number
of stack to report is taken from NO variable.

Functions

init
initiating the 3D model interface.

report3dmodelrotated
Display 3D model of rotated image stacks.

133

CHAPTER 15. UNIT IMPLEMENTATION

Figure 4: Overview of the internal structure of the Report function superunit
and transaction analysis.

134

15.5. REPORT SUPERUNIT

rotatedplothelper(xc,yc,linecolor)
Helper function to display segmentation in rotated image stacks.

15.5.2 Report Volume unit

The purpose of the Report Volume unit is to do volume reports.

Interactions

The Export unit is called for export of data.

Datastructure

The volume information is taken from the SET struct. Number of stack to
report is sometimes taken from the NO variable.

Functions

curve Callback(no,path,name)
GUI for reporting the volume curve.

loop Callback
Reporter for volume loop (not yet implemented).

15.5.3 Report Radial Velocity unit

The purpose of the Report Radial Velocity unit is to do reports of radial
velocity.

Interactions

Suitable image stacks are found by the Find unit and the calculations that
generate the reported results are performed by the Calculation unit. The
Export unit is called for export of data.

Datastructure

The radial velocity information is taken from the SET struct. Number of
stack to report is taken from the NO variable.

135

CHAPTER 15. UNIT IMPLEMENTATION

Functions

helpimageposneg(im,sector,konst)
Helper function to display image.

15.5.4 Flow unit

The purpose of the Flow unit is to quantify and report flow data from phase
contrast images.

Interactions

This unit interacts with the Calculation superunit for assistance in some
calculations. The Export unit is called for export of data.

Datastructure

The data used for flow analysis is contained in the Flow field of the SET

struct.

Functions

expandflowroi(no,m,d)
Expand the roi M outwards by D mm’s.

flow3dmovie Callback(arg,scaling,no,up,down,left,right)
Displays 3D movie of velocity in a vessel.

flowcreate helper(angio)
Helper function to create flow derived image stacks.

flowcreateangio Callback
Create angio image.

flowcreatevelmag Callback
Create velocity magnitude image.

flowdelete helper(angio)
Helper function to delete angio images.

flowdeleteangio Callback
Delete angio image.

136

15.5. REPORT SUPERUNIT

flowdeletevelmag Callback
Delete velocity magnitude image.

floweddycurrent Callback(arg)
Callback for menu selection to do eddy current compensation.

[ok,pulmno,pulmroi,aortno,aortroi] = flowfindqpqs
Find data sets with pulmonary and aortic flow, to use for Qp/Qs analysis.

flowfix(n)
temp function to flip 2d flow directions.

flowflipdirs Callback
Flips LR and UP direction.

flowflipleftright Callback
Flips up/down direction’.

flowflipupdown Callback
Flips up/down direction’.

flowplotquiver Callback
Plots a quiver plot of current image stack.

flowpropagate Callback(m)
Propagate a flow ROI to next time frame and refine.

flowrefine Callback(m,silent)
Refine segmentation of a flow ROI.

flowsegmentroi Callback(name)
Do segmentation of a flow roi.

flowsetvenc Callback
Set VENC for current image stack.

flowshrink Callback(m,factor)
Shrink a flow ROI.

flowtrackroi Callback(m)
Track a flow ROI through all time frames.

137

CHAPTER 15. UNIT IMPLEMENTATION

[varargout] = flowvesselenhancement(no)
Beta function to show vessels with time depending flow.

setflowpreferences Callback
open a box where it is possibly to set the ROI propagation parameters:

balloon force, edge force and curve force.

close Callback
Close flow report GUI.

export
Export flow data to clipboard.

flowbar Buttondown(type)
Button down function for flow bar in flow report GUI.

flowbar Buttonup(type)
Button up function for flow bar in flow report GUI.

flowbar Motion
Motion function for flowbar.

varargout = getdata(arg)
Output requested data from flow calculations.

ok = init(no)
Init flow report GUI.

recalculate(no)
Calculate flow data.

update
Make graphical update of plot.

zoom
Callback for checkbox toggling zoom on/off.

15.5.5 Report Slice unit

The purpose of the Report Slice unit is to do slice based reports of regional
function.

138

15.5. REPORT SUPERUNIT

Interactions

The Export unit is called for export of data.

Datastructure

The regional function information is taken from the SET struct. Number of
stack to report is taken from the NO variable.

Functions

close Callback
Close GUI.

export Callback
Export data to clipboard. Renamed to avoid confusion with export.m.

frac
Callback upon changing frac/wall radiobutton selection to frac.

frameupdate
Different timeframe, update less.

init
Initiate GUI.

next
Callback to go to next frame.

parameter
Update things upon changed selection in parameter listbox.

play
Callback for video playback.

prev
Callback to go to previous frame.

sector
Update plots upon changed sector rotation.

139

CHAPTER 15. UNIT IMPLEMENTATION

sectors
Update upon changing number of sectors.

slice
Different slice, update a lot of things.

update
Update GUI.

wall
Callback upon changing frac/wall radiobutton selection to wall.

15.5.6 Report Bullseye unit

The purpose of the Bullseye unit is to be able to present quantifiable segmen-
tation parameters as bullseye plots. Derived variables from LV segmentation,
viability can be presented. To plot and not color the apical sector alphamap-
ping is used. This requires a renderer that supports this alpha mapping.

The algorithm to convert to a 17 segment model is performed by replicating
each slice into three separate slices with the slice thickness that is one third
of the original slice thickness. Then the total number of slices are always
dividable by three. The slices are divided into equal thirds, for basal, mid,
and apical parts.

Interactions

Interaction with the calculation unit to perform underlying calculations. The
Export unit is called for export of data.

Datastructure

The data in the unit is stored as a mygui object with the following fields:

• volumeconsistent, boolean and true if volume consistent checkbox is
enabled.

• numsectors, number of sectors in the bullseye plot.

• slice, for which the image with spoke wheel is plotted.

• outdata, variable extracted with data (from SET) depending on user
selection.

• ahaoutdata, variable with extracted data in aha 17 segment format.

140

15.5. REPORT SUPERUNIT

Functions

[stri,pos] = aha17nameandpos(i)
Get name of 17 segment.

im = bullseye(m,ax,n,vc,no,tf)
Calculate bullseye from matrix m. Ax is optional axis where the output

image im should be displayed.

m: values in the sectors

ax: figure axes

n: number of pixels in the resulting image

vc: volume consistent (true or false)

im: resulting bullseye image.

[varargout] = bullseye2(m,ax,n,flipx,vc,no)
Generate bullesye data. Optional output argument is im

m: values in the sectors

ax: figure axes

n: number of pixels in the resulting image

flipx: flip in x-direction (true or false)

vc: volume consistent (true or false).

[varargout] = bullseyeaha(m,ax,n,valuetype,linetype)
Calculate and/or plot AHA 17 segment model.

- m is a matrix in polar coordinates. It could also be a vector of 17

segments. Please note in such cases then the order is not the same as

the standard AHA numbering. The names are given by the function

aha17nameandpos.

- ax is axis to plot it in.

- n is the number of pixels

- valuetype is how to treat the merging of data into sectors; mean, sum,

max.

bullseyelistbox Callback
Callback for bullseye listbox. Updates plot.

close Callback
Properly close the GUI.

colormaplistbox Callback
Callback for colormap listbox. Updates plot.

141

CHAPTER 15. UNIT IMPLEMENTATION

defineslices(sign,part)
manual define slices to include in the bullsye plot.

drawsectorimage
Draw image of sector division in new figure.

endocenter
Called when the endocenter checkbox is clicked. Updates SET.EndoCenter.

varargout = export
Export data to clipboard.

value = getdata(type)
Helper function to extract data from the module. Used for instance

from reportsheet generator.

init
Initialize the GUI.

initlaximage

invertcolors Callback
Callback for invert colors checkbox. Updates plot.

maxedit Callback
Callback for edit to change max value. Updates plot.

minedit Callback
Callback for edit to change min value. Updates plot.

nedit Callback
Callback for edit to change value of n. Updates plot.

plotmethodpanel SelectionChange
Callback for changing type of plot (sector, smooth or AHA model).

rotationfromannotation Callback
Finds rotation by looking at RV insertion points.

rotationslider Callback
Callback for rotation slider. Update slice image.

142

15.5. REPORT SUPERUNIT

pos = sectorrotationhelper(no)
Find suitable sector rotation based on RV insertion points.

sectors
called when number of sectors is updated.

separatewindow Callback
Callback for separate window checkbox. Updates plot.

setdata(type,datain)
interface function to gui to set data from code, for instance

reportsheet generator.

sliceslider Callback
Callback for slider to toggle slice.

startbullseye
start up the bullseye analysis.

thissliceonly Callback
Callback for this slice only checkbox.

updateall
Update entire GUI, calls rotationslide and listbox. Thats all.

updatelongaxisimage
Update which slices are active in the longaxis image.

updateplot
Plot different type of data. Calculate / retrieve

data, and perform graphical update. This is a main workhorse.

updatepushbutton Callback
Callback for update pushbutton. Updates plot.

updatesliceimage(plotseperate)
Changed the rotationslider, new slice image.

volumeconsistent
Called when volumeconsistent checkbox is called.

143

CHAPTER 15. UNIT IMPLEMENTATION

15.5.7 Pulse Wave Velocity unit

The purpose of the Pulse Wave Velocity unit is to provide the user with
tools for calculating and reporting pulse wave velocity data, defined as the
user-defined distance between two planes of aortic flow images divided by the
separation in time of the flow curve upslopes of these flow images.

Interactions

This unit calls the Flow quantification unit to access the flow data used to
determine separation in time of the pulse wave.

Datastructure

The measurement information is taken from the Measure field and the ROI
information for flow analysis from the Roi field of the SET struct.

Functions

close Callback
Close Pulse Wave Velocity GUI.

export
Export data to clipboard.

getflows
Get values of flow calculation from Flow report.

init
Initiate Pulse Wave Velocity GUI.

sigmaslider Callback
Callback for when using slider to change the value of sigma.

updateaorticimage
Update full view image of aorta.

updateflowplots
Update plot of flow curves.

144

15.5. REPORT SUPERUNIT

15.5.8 Qp/Qs / Valve unit

The purpose of the Qp/Qs / Valve unit is to provide the user with tools for
reporting Qp/Qs and valvular analysis.

Interactions

This unit calls the Flow quantification unit to access the flow data used to
determine Qp/Qs or regurgitant fractions.

Datastructure

The ROI information for flow analysis is taken from the Roi field of the SET

struct. No datastructure is updated by this unit.

Functions

[svaorta,svpulmo,fwaorta,bwaorta,fwpulmo,bwpulmo] = getsv
Calculate and return stroke, forward and backward volumes both for the

aorta and the pulmonary artery.

result = qpqs
Calculate Qp/Qs and display result in a message box.

[mitrfrac,tricfrac,mitrvol,tricvol] = regurg
Calculate regurgitant fractions for mitralis and tricusp.

15.5.9 Unwrap unit

The purpose of the Unwrap unit is to provide the user with tools for per-
forming correction of wrapped phase values in phase contrast image stacks.

Interactions

Interaction with the calculation unit to perform underlying calculations.

Datastructure

The VENC information for flow analysis is taken from the VENC field of the
SET struct. The SET.VENC field is updated by this unit.

145

CHAPTER 15. UNIT IMPLEMENTATION

Functions

applyandexitpushbutton Callback
Apply and Exit push button.

Saves the phase images to where they came from, overwriting.

and using the VENC, double relative the original.

autounwrappushbutton Callback
Perform automatic phase unwrapping on all flows.

cancelpushbutton Callback
Cancel pushbutton: Exit window, save nothing.

flows = checkflowdata(NO to check)
Check what flow data, if any, exists and return an array of stack

numbers.

closewindow
Everything that is common to the ’Apply and Exit’ and ’Cancel’ buttons.

flowdirectionlistbox Callback
Callback for the flow direction listbox.

pixel over time = getcurrentpixelovertime
Returns the currently selected pixel over time, in units of the

N.B: ORIGINAL VENC.

tms = getcurrenttime
Returns the current time in ms.

slice = getcurrentvelocityslice
Returns the current velocity slice.

[X, Y] = getoverlayplotcoords
Computes the coordinate vectors for the overlay plot

Corners: (x-0.5, y+0.5)

(x+0.5, y+0.5)

(x+0.5, y-0.5)

(x-0.5, y-0.5)

(1st again).

146

15.5. REPORT SUPERUNIT

[X, Y] = gettimeframemarkercoords
Computes the timeframe marker (vertical line in temporal plot)

coordinates.

init(force)
Initialize the Flow Unwrap GUI.

initializeflowdirectionlistbox
Initializes the listbox where flow direction can be selected.

initializegui
Performs startup tasks, like setting slider limits. A full update is

also done after this initialization, so there is no need to duplicate

code in both.

initializehidejumpsizeselect
Hides the jump size selector.

initializehideunnecessary
Hide unnecessary UI elements:

* If there is only one slice, hide slice selection.

* If zoom is 0, hide pan sliders.

initializesliders
Initializes the sliders.

initializetemporalplot
Initializes the temporal plot.

initializevelocityimage
Initializes the velocity image.

jumpsizebuttongroup Callback(src, event)
Jump size selector callback.

keypress Callback(src, event)
Handles keypress events

147

CHAPTER 15. UNIT IMPLEMENTATION

Up 30 Slice -

Down 31 Slice +

Left 28 Timestep +

Right 29 Timestep -

wW 119 Pixel selector up

aA 97 Pixel selector left

sS 115 Pixel selector down

dD 100 Pixel selector right

space 32 Play current slice

shift Wrap up

control Wrap down.

movecurrentpixel(direction)
Moves the current pixel in requested direction, but stops at boundaries.

panimageslider Callback
Callback for the pan sliders.

playcurrentslice
Plays the current slice.

refocus
Gives back focus to slider4 - which has keypressedfcn set to the callback

handling all keyboard shortcuts. Of course we would like to give focus to

the figure itself and let the figure handle the keypresses, but matlab won’t

let us do that. Yes, this is a hack to get around a matlab limitation.

slider4 is placed at (-100, -100), so it shouldn’t cause any

trouble.

sliceslider Callback
Slice slider callback.

timeframeslider Callback
Timeframe slider callback.

unwrapcurrentpixel(updown)
Unwrap current pixel in specified direction.

148

15.5. REPORT SUPERUNIT

unwrapped = unwraptimeseries(wrapped, jumpsize, varargin)
function unwrapped = unwraptimeseries(wrapped, jumpsize, jumpfraction,

debug)

Unwraps a timeseries of samples.

unwrapped: The unwrapped phase

wrapped: The wrapped phase

jumpsize: Size of the expected jumps in the data

jumpfraction: Fraction of jumpsize to consider a jump. Default is 0.5.

debug: Perform sanity checks on input. Default is true, but can be

set to false for speed.

Example usage, when SET(NO) is a phase stack:

SET(NO).IM(x,y,:,slice) = ...

unwraptimeseries(SET(NO).IM(x,y,:,slice), 1, 0.5).

updatecurrentpointoverlay
Updates the current point overlay (red square in velocity image).

updatefullgui
Updates all gui elements to reflect current state.

updatepanimagesliders
Updates the pan image sliders - invisible if zoomlevel is 0.

updatesliders
Updates the time and slice sliders to reflect current positions.

updatetemporalplotaxes
Updates the temporal plot of the current pixel.

updatetextelements
Updates all text elements in the GUI.

updatevelocityimage
Updates the axes showing the velocity image.

updatevelocityimagezoomandpan
Updates zoom and pan in the velocity image.

149

CHAPTER 15. UNIT IMPLEMENTATION

velocityimage ButtonDown
Callback for clicks in velocityimage.

zoompushbutton Callback(inout)
Zoom pushbuttons. Change zoom level, update GUI.

15.5.10 Report Sheet unit

This unit is used to generate a comprehensive patient report. It consists of
the m-file reportsheet.m, the superclass definition htmlgenerator.m used
for formatting the output into a HTML page, and its subclass definition
figgenerator.m used for formatting the output into Matlab figures that
can then be converted into image files for exporting data to PAF or PACS.

Interactions

This unit calls other units from the Report superunit to insert their data
into the report sheet. One such unit is the Flow unit. Another such unit is
the Report Bullseye unit. The File superunit is called to generate reports in
DICOM format and upload them to PACS.

Datastructure

This unit uses the field Report of the SET structure to contain information of
what to include in the report, and the field PatientInfo to contain patient
information used in the report.

Functions

ECV Callback

IncludeStrain Callback
Callback from Strain checkbox.

addECV(report)
adds ecv results to reporter.

adddistances(report)
Adds distance measurements to report.

150

15.5. REPORT SUPERUNIT

addflowanalysis(report, floop, dohtml, path)
Add flow analysis from image stack ’floop’ to report.

addfreetext(report)
Add free text patient evaluation to report.

stri = addimagesax(report)
Add shortaxis image to report.

strlax = addimageslax(report,dohtml)
Add table of longaxis images to report.

addlvanalysis(report,dohtml)
Add LV analysis to report.

addmaranalysis(report, dohtml)
Add MaR analysis to report.

addpatientdata(report)
Add patient demographics to report.

addperfusion(report)
Add perfusion analysis to report.

addperfusionscoring(report)
Add perfusion scoring results to export.

addrvanalysis(report)
Add RV analysis to report.

addscaranalysis(report, dohtml)
Add scar analysis to report.

addscreenshot(report,dohtml)
Add screenshot image/s to report.

addshuntvalveanalysis(report)
Add Qp/Qs and Shunt and Valve analysis to report.

addstrain(report,dohtml)
Add Strain analysis/images to report.

151

CHAPTER 15. UNIT IMPLEMENTATION

addt2star(report)
Add T2* analysis/image to report.

addwallthickness(report,calledfromct)
Add wallthickness analysis to report.

age = calcage(AcqDate,BirthDate)
calculate patient age by using Aqcuisition date and Birth date.

close Callback
Close reportsheet GUI.

distance Callback
Callback from distance measurements checkbox.

flowanalysis Callback
Callback from flow analysis checkbox.

im = generateperfusionscoringimage(type,no)

generatereport Callback(arg)
This is the main function that actually makes the report.

[valuecells,outlier] = generatevaluecells(value,refvalues)
Creates data cells used for LV data table. Also returns an indication of

whether a value is outside the range of the reference.

gensvar Callback
This callback opens a GUI for sending report entries to Gensvar.

gensvarcancel Callback
Callback for cancel of sending report entries to Gensvar.

gensvarok Callback
Callback to approve sending of report entries to Gensvar.

gensvarpasswordedit KeyPress(hObject,eventdata)
Callback activated when changing Gensvar password.

image Callback(imagetype)
Callback from image checkboxes (all of them).

152

15.5. REPORT SUPERUNIT

init
Initialize GUI.

initreferencelistbox(modality)
Initiates listbox of reference values.

lvanalysis Callback
Callback from LV analysis checkbox.

maranalysis Callback
Callback from MaR analysis checkbox.

perfusion Callback
Callback from perfusion analysis checkbox.

perfusionscoring Callback
Callback from perfusion scoring checkbox.

stri = removehats(stri)

reset Callback
Sets all checkboxes to false and empties text edits, reinserts template.

resetall Callback
Resets the entire report.

rvanalysis Callback
Callback from RV analysis checkbox.

scaranalysis Callback
Callback from scar analysis checkbox.

screenshot Callback
Callback from screenshot checkbox.

sendtopacs Callback
Callback for making a report, saving it as a DICOM, and sending it to PACS.

shuntvalve Callback
Callback from Shunt and Valve analysis checkbox.

153

CHAPTER 15. UNIT IMPLEMENTATION

silentflow(ax,no)

t2star Callback
Callback from T2* analysis checkbox.

textedit Callback
Callback from comments textedit.

update
Update SET struct with changes in user interface.

wallthickness Callback
Callback from wallthickness analysis checkbox.

stri = box(hg, text, width)
BOX Method to insert a text box.

stri = columns(hg, varargin)
COLUMNS Method to insert a table without borders, used for dividing

input into columns.

stri = conc(varargin)
Concatenate two or more function calls.

gsstri = ftext(hg)
FTEXT Method to write a paragraph of text with formatted headlines.

stri = headline(hg, headtext, prio)
HEADLINE Method to write a headline in bold.

stri = hline(hg)
HLINE Method to write a horizontal line.

stri = html footer(hg)
Return string used as HTML footer.

stri = html header(hg)
Return string used as HTML header.

hg = htmlgenerator(title, pathname, filename, pagewidth)
Constructor.

154

15.5. REPORT SUPERUNIT

stri = image(hg, imgname, imgsource)
IMAGE Method to add an image. Also stores it to disk in

the same folder as the HTML file. imgsource can be a

location or an image matrix.

stri = link(hg, ref, text)
LINK Method to write a link to a file or URL.

stri = newline(hg)
NEWLINE Method to insert a line break.

newpagepos = pagebreakchk(hg, pagepos, nextblock)
PAGEBREAKCHK Method to insert a page break

Checks if it is time to insert a page break using ’pagepos’ parameter.

hg = start(hg)
START Method to open the HTML file and write headers.

hg = stop(hg)
STOP Method to write necessary HTML footers and close file.

stri = table(hg, content, boldcells, width)
TABLE Method to insert a table with content specified by a cell.

stri = text(hg, paragraph, alignment)
TEXT Method to write a paragraph of text.

write(hg, str)
Writes a string of characters to file.

columns(fg, varargin)
COLUMNS Method for dividing input into columns.

call = conc(varargin)
Concatenate two or more function calls.

fg = figgenerator(title, pathname, filename, pagewidth, lineht)
Constructor.

gsstri = ftext(fg)
FTEXT Method to write a paragraph of text with formatted headlines.

155

CHAPTER 15. UNIT IMPLEMENTATION

call = headline(fg, headtext, lpos)
HEADLINE Method to write a headline in bold.

hline(fg)
HLINE Method to write a horizontal line.

call = image(fg, imgname, imgsource, lpos)
IMAGE Method to add an image. imgsource can be a

location or an image matrix.

call = newline(fg)
NEWLINE Method to insert a line break.

newpagepos = pagebreakchk(fg, pagepos, nextblock)
PAGEBREAKCHK Method to insert a page break

Checks if it is time to insert a page break using ’pagepos’ parameter.

start(fg, figtitle)
START Method to open a new figure.

stop(fg)
STOP Save all figures to image files, then close them.

call = table(fg, content, boldcells, width, lpos)
TABLE Method to insert a table with content specified by a cell.

call = text(fg, paragraph, alignment, lpos, weight)
TEXT Method to write a paragraph of text.

zoom(fg)
ZOOM Zoom to current page size.

15.5.11 Export unit

The exporting tools exports data from the SET structure or .mat files to the
clipboard.

Interactions

The functions in the Calculation superunit are used frequently and the func-
tion cell2clipboard from the Main superunit is used extensibly.

156

15.5. REPORT SUPERUNIT

Datastructure

The exporting routines use the SET structure.

Functions

export2stl Callback
Exports mesh in current image stack as STL file. Asks for surface to

export and then takes current timeframe to export.

export2stl helper(no,x,y,resolution,tf,closeapex,fignr,pathname,filename)
Helper function that fixes with coordinates etc before exporting.

exportall2stl(no,pathname,filetemplate,fignr,resolution,tf)
Helper function to exportall2stl.

exportall2stl Callback
Exports all contours and ROI’s to stl file(s)

LV endo and epi gives left ventricle

RV endo gives right ventricle with 1mm thickness

RV epi gives left atrium closed in base

ROI’s gives tubes with 1 mm thickness.

exportbatch2stl Callback
Export all2stl for multiple .mat files.

exportclosesurfaces(no1,x1,y1,no2,x2,y2,closebase,closeapex,resolution,fignr,fid)
Helper function to close to surfaces (basal) and export to STL file.

Please not that this takes a mesh in form of points * slices (i.e

timeframe already selected. This is different from elsewere in STL export.

no1 and no2 are required to be able to calculate 3D coordinates (patient

system).

exportcontour Callback
Export contour. Ask what contour to take.

varargout = exportdata(doheader,includenormalized,no)
This is the workhorse of export functions.

- doheader tells whether to include a header.

- includenormalized tells whether to include BSA normalized data.

- no tells whether to export ONLY image stack no.

157

CHAPTER 15. UNIT IMPLEMENTATION

exportendoepitoensight Callback
Exports endocardium and epicardium in Ensight format.

exportimage Callback(image2store)
Export an image to an image file. If no input image exist, export current image with current slice and timeframe.

exportleftatria2stl(no,tf,fignr,filename,resolution)
Exports RV epicardium surface to STL but names it LV atria. Closed in

base. Wall thickness is set to 1mm.

exportlv2ensight Callback
Export left ventricle to Ensight.

exportlv2stl(no,tf,fignr,filename,resolution)
Exports LV surface to STL (with inner and outer contour, closed in apex

and surfaces merged in the base.

exportlv2stl Callback
Exports LV (endo and epi) as one surface and takes care of closing the

surface suitable to read into CAD software.

exportmovie Callback
Function to export a movie without contours. This is a quick method to

generate a movie of the current image stack.

exportmovierecorder Callback(arg)
Movie recorder GUI.

exportmultiplePerf Callback
Creaty summary of Perfusion

from multiple matfiles in one folder.

This function is very useful for research.

exportmultiplePerfsplit Callback
Creaty summary of Perfusion split

from multiple matfiles in one folder.

This function is very useful for research.

exportmultipleROI Callback(dosegdicom)
Creaty summary of multiple matfiles in one folder

This function is very useful for research. The user

performs all delineations and then exports all data to

one spread sheet.

158

15.5. REPORT SUPERUNIT

exportmultiple Callback(dosegdicom)
Creaty summary of multiple matfiles in one folder

This function is very useful for research. The user

performs all delineations and then exports all data to

one spread sheet.

exportmultipleinfo Callback
Exports information of image stacks for a folder of mat files.

This function is useful for debugging and checking purposes of

the integrity of multiple .mat files.

exportmultiplestrainRV Callback(type)
Creaty summary of strain result (tagging or cine strain analysis)

from multiple matfiles in one folder.

This function is very useful for research. The user

performs all strain analysis and then exports all data to

one spreadsheet.

exportmultiplestrainRVgraphs Callback(type)
Creaty summary of strain result (tagging or cine strain analysis)

from multiple matfiles in one folder.

This function is very useful for research. The user

performs all strain analysis and then exports all data to

one spreadsheet.

exportmultiplestrain Callback(type)
Creaty summary of strain result (tagging or cine strain analysis)

from multiple matfiles in one folder.

This function is very useful for research. The user

performs all strain analysis and then exports all data to

one spreadsheet.

exportmultiplestraingraphs Callback(type)
Creaty summary of strain result (tagging or cine strain analysis)

from multiple matfiles in one folder.

This function is very useful for research. The user

performs all strain analysis and then exports all data to

one spreadsheet.

exportrv2stl(no,tf,fignr,filename,resolution)
Exports RV surface to STL (with inner and outer contour, closed in apex

and surfaces merged in the base. OBS this function ignores RV epicardium

and fakes in an epicardium. Wall thickness is set to 1mm.

159

CHAPTER 15. UNIT IMPLEMENTATION

exportrv2stl Callback
Exports RV to STL file. This file ignores epicardium and fakes in a

epicardium.

ok = exportsavemovie(mov,left,right,up,down,fps)
Exports a move as an avi file or a set of png-files.

- mov is a movie struct.

- left,right,up,down are crop coordinates.

- fps is frame rate.

Allows user to select different codecs.

outdata = exportslicehelper(outdata,rowoffset,coloffset,type,x,y)
Helper function to export slice based data.

exportslicevolume Callback
Export slicebased volume.

exportthisstack(doheader)
Export data from current image stack to clipboard.

exporttoclipboard Callback(doheader,no)
Export data to clipboard. Calls another function to do the export.

exporttoclipboardthisstack Callback(doheader)
Exports data for current image stack to clipboard.

exportvolumecurve Callback
Export volume curve to clipboard.

[outdata,ind] = header(onlyone)
Helper function to write header when exporting data.

[xnew,ynew] = innersurface(x,y,no,dist)
Takes a surface x,y and returns a new surface inside of this surface with

a distance of dist mm. x are assumed to be size NumDataPoints*Z.

[x,y] = meshfixer(x,y)
Fix a mesh if the "layers" are twisted.

The mesh is assumed to be rows of coordinates.

160

15.6. SEGMENTATION SUPERUNIT

mmodemeasurements Callback
Export mmode measurements.

stri = removenumerics(stri)
Remove numbers from a filename.

screenshot Callback
Create an image file of a screenshot of the main axis.

utilityslicebasedvolumeexport Callback

15.6 Segmentation superunit

The Segmentation superunit contains functions that are used for doing seg-
mentations on images. These are used to perform quantifications and usually
leave visible traces that require graphical updates performed by the Draw su-
perunit.

15.6.1 Measurement unit

The purpose of the Measurement unit is to make linear measurements of
details in images. Some of these measurements can be used for other quan-
tifications.

Interactions

This unit calls the Helper functions superunit to handle mouse input from
the user and the Draw superunit to make graphical updates.

Datastructure

The SET struct has a field Measure, which is a struct that contains measure-
ments in the image stack. If no measures exist, then Measure is an empty
array. If measures exist then it is a structure array where each measurement
has the following fields:

• X A 2 x 1 vector with X-coordinates.

• Y A 2 x 1 vector with Y -coordinates.

• Z scalar with the slice.

161

CHAPTER 15. UNIT IMPLEMENTATION

• Length Length of the measure in mm.

• Name String containing the name of the measure.

Functions

measure Buttondown(panel) Button down function for measurements.
measure Motion(ind) Motion function for measurements.
measureexport Callback Export measurements.
measuremove Callback(dx,dy) Helper function to move measurements.
measurepoint Buttondown(panel) Buttondown function fore a measure-

ment point/marker.
measureput Buttondown Called when a measurement point (except the

endpoint) is placed
measure Buttonup Button up function for measurements.
[stri,lstr] = measureasklabel(g) Asks for a label of a measurement.
measureclearall Callback(g) Clear all measurements.
measureclearthis Callback(g) Clear current measurement.
measurefontsize(g,panel,index) Sets measure font size.
measurerenamethis Callback(g) Rename current measurement.

15.6.2 Annotation point unit

The purpose of the Annotation point unit is to allow the user to place anno-
tation points in an image.

Interactions

This unit calls the Helper functions superunit to handle mouse input from
the user and the Draw superunit to make graphical updates.

Datastructure

The SET struct has a field Point, which is a Struct that contains position of
annotation points. The struct has the following fields:

• X 1 x N vector with X-coordinates, where N is the number of annota-
tion points.

• Y 1 x N vector with Y -coordinates.

• T 1 x N vector with time frames (i.e. one for each point).

162

15.6. SEGMENTATION SUPERUNIT

• Z 1 x N vector with slice (i.e. one for each point).

• Label 1 x N cell array with string with the labels.

Originally all points were non time resolved. Thereafter where time resolved
points implemented by making T points from one point. Non time-resolved
points are shown as bold text. Time-resolved points are only implicitly con-
nected by their position and more importantly the label.

Functions

point Buttonup
Button up function for points.

point Motion
Motion function for points.

pointat Buttondown(panel,type)
Buttondown function when clicked at a point.

pointclearall
Clear all points.

pointclearall Callback
Clear all points.

pointcleartemplate Callback
Clear points using naming template.

pointdeletethis Callback
Delete point.

pointexportall Callback
Export all point data.

ind = pointfind(silent)
Find neareast point.

pointforward Callback
Track point forward in time.

163

CHAPTER 15. UNIT IMPLEMENTATION

pointmaketimeresolvedthis Callback
Converts a none time resolved point to a time resolved point.

pointmove Callback(dx,dy)
Helper function to move points.

pointrenametemplate Callback
Rename points according to a renaming template.

pointrenamethis Callback
Rename point.

15.6.3 LV segmentation unit

The purpose of the LV segmentation unit is to provide tools for automated
and semi-automated segmentation of the left ventricle from either Cardiac
MR, Cardiac CT or Myocardial Perfusion SPECT (MPS). The used seg-
menation algorithm for CMR is described in [8]. The used segmentation
algorithm for MPS is decribed in [9] and [10].

Interactions

This unit calls the Helper functions superunit to handle mouse input from the
user and the Draw superunit to make graphical updates. It is related to the
Contours unit described in Section 15.6.5 that are used to copy and import
segmentations between image stacks. The RV segmentation unit described
in Section 15.6.4 shares code with the LV segmentation unit.

Datastructure

The LV segmentation is stored in the SET variable and specifically the fields
EndoX and EndoY. The units are pixels.

Functions

The functions for lv segmentation in CMR images are described in the file
lv.m. The functions for lv segmentation in CT images are described in
the file CTLVSegmentation.m. The functions for lv segmentation in MPS
images are described in the file spectlvsegmentation.m. These files are
not autodocumented in this Technical manual, since it contains propriety
algorithms. Please consult the lv.m and spectlvsegmentation.m files for
details instead.

164

15.6. SEGMENTATION SUPERUNIT

15.6.4 RV segmentation unit

The purpose of the RV segmentation unit is to provide tools for semi-automated
segmentation of the right ventricle. The used segmenation algorithm is a
quick modification of the LV segmentation algorithm(s). The code is imple-
mented in the file rv.m, but does also share code with the LV segmentation
unit in Section 15.6.3.

Interactions

This unit calls the Helper functions superunit to handle mouse input from the
user and the Draw superunit to make graphical updates. It is related to the
Contours unit described in Section 15.6.5 that are used to copy and import
segmentations between image stacks. The LV segmentation unit described
in Section 15.6.3 shares code with the RV segmentation unit.

Datastructure

The RV segmentation is stored in the SET variable and specifically the fields
RVEndoX and RVEndoY. The units are pixels.

Functions

The functions are described in the file rv.m. This file is not autodocumented
in this Technical manual, since it contains propriety algorithms. Please con-
sult the rv.m files for details instead.

15.6.5 Contours unit

The purpose of the Contours unit is to do operations on segmentation con-
tours. The unit is implemented in the file segmentation.m.

Interactions

Since many of its operations change the segmentation, this unit frequently
calls Draw unit operations to update the graphic display.

Datastructure

The segmentation information on which to operate is taken from the SET

struct and the stack number is taken from NO variable.

165

CHAPTER 15. UNIT IMPLEMENTATION

Functions

clear helper
Helper fcn to clear segmentation.

clearall Callback
Clear all segmentation, both endo and epi, lv and rv.

clearalllv Callback(silent)
Clear all lv segmentation, both endo and epi.

clearallrv Callback(silent)
Clear all rv segmentation, both endo and epi.

clearslices(no,ind,timeframes,endo,epi,rvendo,rvepi)
Workhorse in clearing slices.

clearslices Callback(endo,epi,rvendo,rvepi)
Helper function to clear segmentation in selected slices.

clearslicesthis Callback(endo,epi,rvendo,rvepi)
Clear segmentation for selected slices according to mode.

clearthis Callback(endo,epi,rvendo,rvepi)
Helper function to clear segmentation in this (current slice) slice.

e = edgehelper(im)
Calculates an edge image.

[sourceslice,destslice,sourcetime,desttime,zdirsource,zdirdest] = findmatch-
ingslices ...

(tono,fromno,doendo,doepi,dorvendo,dorvepi,takefromclosestseg,importtf)
Find matching slices between source image stack and destionation image stack

The matching is based on camera position.

importadjust(no)
Snap segmentation to another frame.

importadjust Callback
Snaps imported segmentation to image by trying to look at edge detection.

166

15.6. SEGMENTATION SUPERUNIT

[destx,desty,desttimeframes] = importcoordinatehelper(destno,desttime,sourceno,sourcex,sourcey,sourcetime,sourceslice)
Converts coordinates xsource,ysource to coordinated xdest,ydest. Assumes slices fixed separately

destime = vector of destination times

xsource = matrix (numpoints x sourceframes)

xdest = matrix(numpoints x destframes).

importfromcine2scar Callback
Import segmentation from cine to scar image stack.

importfromcine2txmap Callback
Import segmentation from cine to Tx maps image stack.

[destno,sourceno] = importsegmentation Callback(no,importtf,doseg,txmapimport)
Import segmentation from another image stack.

Imports to current image stack NO from no or if called with no input

arguments user is asked.

[desttimeframes,destslices,sourceslices] = importsegmentationhelper ...
(tono,fromno,doendo,doepi,dorvendo,dorvepi,importtf,txmapimport)

Helper function to segmentimportsegmention Callback.

- tono is destination of segmentation.

- fromno is source.

The function is capable of handeling slice offsets and different

pixelssizes as well as situations when number of timeframes differ. When

destination is not timeresolved and source is timeresolved then user is

asked from what timeframe to take the segmentation from.

importsegmentationwithsnap Callback(no,importtf,doseg,txmapimport)
Same as importsegmentation but also snaps contour (rigid registration).

interpolatedelineationovertime Callback
Interpolate LV or RV delineation over time from existing delineations.

removeallinterp Callback(silent,no,arg,indarg)
Remove all interp points.

removeallpins Callback(silent,endo,epi,rvendo,rvepi)
Remove all pins.

167

CHAPTER 15. UNIT IMPLEMENTATION

removeallpinsthisslice Callback(current,endo,epi,rvendo,rvepi)
Remove all pins in this slice.

removepin Callback(type,m)
Removes pins.

removethispins Callback(endo,epi,rvendo,rvepi)
Remove pins in this slice and timeframe.

resetedgedetection
Reset the edge detection.

rvcopyfromlvendo Callback
Copy RV from LV segmentation (endocardium).

rvcopyfromlvepi Callback
Copy RV from LV segmentation (epicardium).

z = score(im,x,y)

15.6.6 Viability unit

The purpose of the viability module is to quantify scar from delayed en-
hancement images. The viability tools have been extensible described and
validated in [11], and [12]. The transmurality is documented in [13]. The
term noreflow that is used in the code is a legacy term since this was used in
the scientfic literature at the time of implementation of the module instead
of the now accepted term microvascular obstruction or MO.

There is no dedicated user interface, all interactions are performed in the
main window and some user changable defaults are displayed in the menu,
and stored in the SET struct.

Interactions

The viability unit have interactions with the following units:

• Draw superunit. The unit calls routines in the viability unit to perform
drawing of colour overlays indicating regions of manual corrections.
Calls to reshape2layout.

168

15.6. SEGMENTATION SUPERUNIT

• Helper functions superunit. Find slices with endocardial and epicardial
segmentation in which the scar segmentation can be performed. Handle
mouse interaction when drawing scar manually.

• Calculation superunit. Volume calculations of scar, finding slices, cre-
ating masks, Volume unit

Datastructure

The data is stored in the Scar field of the SET struct.

• IM contains the image itself (a copy). This is from historical issues and
may be removed in future versions.

• Auto a logical array that contains true in the positions that the algo-
rithm marks as ’infarcted’.

• Manual an int8 array that contains 1 for the pixels that the user have
manually to be infarcted and -1 for the pixels that the user have marked
as non-infarcted.

• Result a logical array containing the final viability delineation with
the manual corrections.

• NoReflow a logical array containing one in the regions that have been
identified as no reflow regions, or regions with microvascular obstruc-
tion.

• MyocardMask a logical array containing true in the myocardium and
false otherwise.

• beta a scalar controlling the ruffness of the surface. See the algorithm
description for further details [11].

• stdlimit a scalar determine the number of standard deviations from
remote to take.

• radius Radius of the fast level set algorithm, see [11] for details.

• Percentage a scalar representing the percentage of the pixels that are
marked as infarcted.

• OnlyEndo true if only endocardium delineation exists.

• UseWeighting true if weighted mode is used.

• MOPercentage percentage microvascular obstruction.

169

CHAPTER 15. UNIT IMPLEMENTATION

• UpdateDirectly true if direct update on volumes should be performed
after adjustments

• minweight this is the minimal weight used in the weighting algorithm

• MOThreshold threshold used for microvascular obstruction. The MO
threshold is defined as threshold for myocardium times MOThreshold.

Functions

calchelper(force,slicetodo); %This function sets UpdateDirectly to true af-
ter one go.

;d;.

[patchinessindex,fullindex] = calcpatchinessindex(no)
Calculates a patchiness index. Roughtly it is the perimeter of the scar

divided with twice the length of the scar.

[res,varargout] = calctransmuralityline(numsectors,no)
Calculates transmurality.

Output in order

- Mean transmurality in the number of sectors

- Max transmurality in each sector

- Mean transmurality calculated only over infarcted areas.

- Total Extent

- "Start" transmurality

- "End" transmurality

Note that you need to set StartSlice and EndSlice!!!.

[res,varargout] = calctransmuralityweighted(numsectors,no)
Calculate transmurality according to the weighted method.

[core,greyzone,scarregion] = calcweightedgreyzone(no)
Calculates greyzone according to weighted method.

checklinkage
check if current image stack is linked, if so aske user to unlik the image

to perform scar analysis.

grayzoneclear Callback
Removes Gray Zone analysis from current image stack.

170

15.6. SEGMENTATION SUPERUNIT

moslider Callback
Callback for MO slider.

moslideredit Callback
MO slider Callback.

mosliderhelper(status,no)

v = nanremove(v)
Replace NaN with zeros.

final = remove holes(a)
The function removes hole in an ND image.

sdfromremoteedit Callback
This callback is executed when user changes editbox coupled to

sdfromremote.

sdfromremoteslider Callback
This Callback is called when user adjust SD from remote slider. Slider1 is

coupled for this purpose in SD from remote mode.

sdsliderhelper(status,no)
Helper function to toggle sd slider visibility.

sliderupdate(no)
This function is called to set up proper slider behaviour in viability

mode.

viabilityautocalc(force)
Automatically calculate viability. This is the workhorse.

Different options for calculation se as Scar.Mode.

If force is not true then ask if stdlimit ~= 1.8.

viabilityautoem
Set EM mode.

viabilityautoewa
Automatic viability using Janes method.

171

CHAPTER 15. UNIT IMPLEMENTATION

viabilityautofwhm
Set FWHM mode.

viabilityautootsu
Automatic viability using the method in the

Outsu method.

viabilityautosdfromremote
Automatic viability using the method SD from remote.

viabilityautoweighted
Automatic viability using the method in the

Radiology paper.

viabilitycalc(force)
Automatically calculate viability. This is the workhorse.

Different options for calculation se as Scar.Mode.

If force is not true then ask if stdlimit ~= 1.8.

viabilitycalchelper(force,slicetodo)
Automatically delineates viability. This is the workhorse. For weighted

mode this is run every time changes are made, for other modes it is

typically only run once.

viabilitycalchelperfwhm(no)
Help function for FWHM.

viabilitycalchelpersdfromremote(no)
Helper function for SD from remote implementation.

viabilitycalchelperweighted(force,slicetodo)
Old weighted infarct calculation.

[slicetodo,ok] = viabilitycalcinit
Preprocessor for viabilitycalc.

viabilitycalcvolume(no,intweight)
Calculates the volume of the viability.

viabilityclear Callback
Callback to clear scar data.

172

15.6. SEGMENTATION SUPERUNIT

viabilityclearmanual Callback
Callback to clear manual interactions.

viabilityclearmanualslice Callback
Callback to clear manual interaction in current slice.

viabilityclearslice Callback
Callback to clear viability for current slice.

viabilitycreatemask(no)
Helper function to create the myocardial mask.

viabilitygetsd Callback
calculate nbr of sd based on auto/manual scar segmentation.

viabilitymanual
Set manual mode.

viabilitymenu(no)
Update the viability menu (helper function).

intweight = viabilitynewweight(no)
Experimental new weighting.

viabilityreset Callback(mode,no)
Callback to reset all scar settings.

viabilitysetbeta Callback
Set the curvature beta, used in the levelset part of the viability

algorithm(s).

viabilitysetminvolume Callback
Sets minimal volume for a single infarct.

viabilitysetsdfromremote Callback
Set number of standard deviations from remote.

viabilityshowgrayzone Callback
Show overlays of core (dark red) and greyzone (dark yellow).

viabilityshowinfarctaswhite Callback(show)
Show infart as white overlay.

173

CHAPTER 15. UNIT IMPLEMENTATION

viabilityupdatewithmanual
Upates the scar with manual interactions and removes small infarcts

(depending on mode). Also updates the volumes. This function was

previously part of viabilitycalc and are now called from that function.

[intweight,varargout] = viabilityweight(no)
Finds intensity mapping of infarct for weighted algorithm.

This function is used both for old weighted algorithm and EWA.

weightedslider Callback
Weighting slider, only HMG for now.

weightedsliderautopushbutton Callback
Automatic adjustment of weighted slider for a fix infarct size.

weightedslideredit Callback
Weighting slider edit box, only HMG for now.

weightingsliderhelper(status,no)
Helper function to toggle weightd slider on/off.

15.6.7 Myocardium at risk unit

The purpose of the Myocardium at risk unit is to be able to do manual or
automatic segmentation of the ischemic myocardium at risk of infarct from
CMR or Myocardial Perfusion SPECT (MPS).

Interactions

This unit interacts with the followint units:

• Draw superunit to draw the contours and manual interactions for my-
ocardium at risk.

• Calculation superunit to update volume calculations

• Helper functions unit to find slices with endocardial and epicardial
segmentation in which the segmentation of myocardium at risk can be
performed

174

15.6. SEGMENTATION SUPERUNIT

Datastructure

The data is stored in the SET variable in the field .MaR with the following
subfields.

• Auto: Stores the automatic segmentation

• Result: Stores the resulting segmentation from Auto and Manual

• Manual: Stores manual segmentation or manual interactions

• MyocardMask: Stores a mask of the myocardium i.e. a mask of the
pixels between endocarium and epicardium

• MR: Stores parameters specific to segmentation in CMR

• MPS:Stores parameters specific to segmentation in SPECT

• Percentage: Stores the resulting volume of myocardium at risk as
percentage of left ventricular mass

• Mode: set to manual if manual drawing of myicardium at risk

• UpdateDirectly: Parameter to decide if graphical update should be
performed directly

Functions

All functions for myocardium at risk delineation is implemented in mar.m
and t2wmarsegmentation and spectmarsegmentation for the automatic seg-
mentation in t2w CMR, respectively SPECT.

15.6.8 ROI analysis unit

The purpose of the ROI analysis unit is to provide general tools for region
of interest analysis and to be able to extract signal intensities and related
statistics.

Interactions

• Draw superunit since it is responsible to graphically draw the regions
of interest on screen.

• Report superunit uses the export to clipboard features to export data.

• The report unit uses the calctruedata function in the Calculation
superunit.

175

CHAPTER 15. UNIT IMPLEMENTATION

Datastructure

The data is stored in the SET variable in the field Roi and contains the
following fields:

• X, X-coordinates of regions of interests. They are stored in an array
as N x T , where N is the number of points along the contour (to be
precise it is actually DATA.NumPoints), T is the number of time frames.
For non time resolved ROI’s X can also be a vector of length N .

• Y, Y -coordinates of regions of interest. For details about size, see above.

• T, T -coordinates of the region of interest.

• Z, Z-coordinate of the region of interest.

• Sign, sign of the region of interest. This is used for flow quantifications
and is stored as a vector with elements that are either -1 or 1.

• Name, name of the region of interest.

• LineSpec, line specification for the region of interests. Stored as a
string as Matlab compatible line specifications. Examples are ’b-’

(blue line), ’y:’ (yellow dotted line).

• Area, area of the ROI for each timeframe.

• Mean, mean intensity of the ROI content for each timeframe.

• StD, standard deviation of the ROI content for each timeframe.

Related are also the fields RoiArea, RoiCurrent, and RoiN.

Functions

expandcontract Callback(stepsize)

removefromallbutthistimeframe(n)
Remove ROI from all but this time frame.

removefromthistimeframe(n)
Remove ROI from this timeframe.

roi Buttondown(panel)
button down function for drawing roi.

176

15.6. SEGMENTATION SUPERUNIT

roiaddfixsize Callback
Function for adding roi with fix size.

roiaddinsector Callback(angle, width,percentfromendo, ...
percentfromepi, numsectors, name)

Add sectors in ROI, input arguments is angle of where to start, the

width of the sector given as an angle, how many percent from endo the

sectors will be placed, how many percent from epi the sectors will be

placed, the number of sectors and finally the name under which the

sector/roi will be stored.

name = roiasklabel(varargin)
Lets user pick name of roi from a picklist.

Input: roitoname is the number of the roi to name, if this input argument

is empty the choice of naming the roi to ’ROI-n’ is disabled (the function

can not handle a cell so if multiple rois are to be named use ’’ as first

input), roinamein is the name of the roi to be renamed (this functionality

is used when renaming using template). Both input arguments are optional

but if the first argument is not supplied the choice of naming the roi to

’ROI-n’ is disabled.

name = roiasktemplate(no)
function used for asking for name of roi template.

roiclearall Callback
clear all ROIs.

roicopyalltimeframes Callback(n)
copy ROI to all time frames.

roicopydownwards Callback(n)
copy ROI one slice downward.

roicopyendo Callback
Copy from endocardium to a ROI.

roicopyepi Callback
Copy from epicardium to a ROI.

roicopyfromotherimagestack Callback
Copy roi from other image stack. Let user select from

which image in an input dialog.

177

CHAPTER 15. UNIT IMPLEMENTATION

roicopymar Callback
Copy from scar to a ROI.

roicopyscar Callback
Copy from scar to a ROI.

roicopyupwards Callback(n)
copy ROI one slice upward.

roidelete Callback(n,draw)
delete ROI n.

roiexportvalues Callback
Get what ROI’s to take.

no = roifindmag(no)
Find magnitude no.

roiforce Callback
Function to set force shape over time in menu checked and unchecked.

roiforceapply
function to force shape over time.

m = roiget(stri,arg)
Gets roi either by getting closest ROI to clicked coordinates

if two input arguments or by selecting in a pick list.

roisign = roiguessign(nom,nop,currentroi)
Guesses sign of the roi to make the net flow through the roi be positive.

roihistogram Callback
Make intensity histogram from ROI with either normalized intensities or true

intensities. Uses roiselector to let user decide what data to be analysed

in the histogram. Also let’s user decide how many bins in the histogram

and if zero should be excluded.

values = roihistogram helper(rois,timeframes,normalized,excludezero,export)
Helper function to roihistogram, extracts values.

roiimportroi Callback(no)
Import roi from image stack. Let’s user select from which image in an

input dialog.

178

15.6. SEGMENTATION SUPERUNIT

roilabel Callback(x,y)
Function for putting name on a roi.

roiputroi Buttondown(panel)
Buttondown function for putting circular roi.

roi = roireset(no)
Reset ROI values when stack is emptied.

[rois,timeframes,normalized] = roiselector(usealltimes,thissliceonly,template,normalized)
Dialogbox in which user decides if all timeframes, only this slice

and normalized intensity values should be used. All values can be

changed seperately.

roisetcolor Callback(n)
Change color of roi. Which roi to use is either decided by closest roi from

clicked coordinate if input argument is -1 else by user selecting from a

pick list.

roisetlabel Callback(n)
Change name of roi. Which roi to use is either decided by closest roi from

clicked coordinate if input argument is -1 else by user selecting from a

pick list.

roiswitchsign Callback(m)
Switch sign of roi. The sign is used when calcualting flow through roi.

roitemplatedelete Callback
Function to delete roi by template.

roitemplatesetcolor Callback
Function to rename roi by template.

roitemplatesetlabel Callback
Function to rename roi by template.

roithresholdnumeric Callback
numeric threshhold inspector.

roithresholdvisual Callback
visual threshhold inspector.

179

CHAPTER 15. UNIT IMPLEMENTATION

roitoendo Callback
Copy from endocardium to a ROI.

roivisualslider Callback(arg)
gui for visual threshhold.

roivisualsliderkeypressed
key pressed function for visual slider.

selectroi Buttondown(panel,roinbr)
Buttondown function used for changing current ROI.

15.7 Resources superunit

This superunit contains functions called by the user and whose interactions
with other functions are few.

15.7.1 Help unit

The purpose of the Help unit is to contain functions that are called from the
Help menu.

Interactions

Interactions are negligible from this unit.

Datastructure

Use of datastructures is negligible.

Functions

about Callback
Displays help information about the software.

aboutrvq Callback
Displays help information about RVQ.

bug Callback
User bug report function.

180

15.7. RESOURCES SUPERUNIT

generalhelp Callback
Open Medviso homepage in browser.

hotkeys Callback
Shows help of hot keys in Segment.

instructionsforuse Callback
Open instructions for use file.

openlogfiles Callback
Open list of log files in browser.

openthislogfile Callback
Open log file for this session in browser.

support Callback
Open mail composer to submitt email to support.

supportreq Callback(call)
Callback to open support request GUI.

tutorials Callback
Opens the webpage for showing tutorials on the software.

usermanual Callback
Open reference manual.

15.7.2 Preferences unit

The purpose of the preferences unit is to provide a mechanism of storing user
preferences in Segment.
For a complete description of the preferences and their usage, see the Refer-
ence Manual. The preferences are read when Segment is started or when
the preferences GUI are opened. Segment tries to find a suitable place
for the preferences file by looking in the environment variables APPDATA,
USERPROFILE, HOMEPATH. Place can be found by calling the Segment func-
tion getpreferencespath.

Interactions

The preferences data is read from multiple places in Segment but is only
assigned in segpref.m with the exception of loading that sets latest loaded
file.

181

CHAPTER 15. UNIT IMPLEMENTATION

Datastructure

The preferences are stored in the DATA object with the fields:

• datapath. Path to image data. This is the path first opened when the
fileloader GUI is started.

• exportpath. Path where image data is exported to.

• AnonymMode. True if patient details should no be shown on screen.
Note that this does only affect the screen. To permanently anonymize
an image stack, see Reference Manual for details.

• AddPoints. True if pins should be added when manually drawing a
part of a contour.

• EndoCenter. True if the center of the endocardium is used for drawing
spikes and regional wall motion analysis. If false the the center of the
epicardial surface is used.

• BlackWhite. True if the lines contours should be drawn in white color
instead of object specific colors.

• LineWidth. Width of the lines. Default is 1.

• NumPoints. Number of points to evaluate the endocontour along.

• LearnMode. True if learning messages should be displayed.

• UndoHistory. The maximum length of the undo history.

• reportsheetpath. Path to where the files for the report sheets are
generated.

• IncludeAllPixelsInRoi. If true, then also pixels that are touched by
the ROI are included in the subsequent processing. Default is false,
and in this mode only pixels whose centrum are inside the contour are
included.

• AutoSave. If true then the segmentation is autosaved every fifth minute
under the name autosave.seg.

• ContourAdjustDistance. The maximum distance to a contour a user
can click before the contour is not acknowledged as a click on that
contour. Measured in pixels.

182

15.8. TOOLS SUPERUNIT

• PacsTempStoragePath. The path where the temporary files for the
PACS retreival are stored. This field might be obsoleted in future
versions.

• ExcludePapilars. True if the papilars should be excluded in the au-
tomatic segmentation. See Reference Manual and [2, 3] for details.

• UseLight. True if to use current brightness and contrast as a cue in the
Segmentation process. For further details see the Reference Manual.

Functions

• segpref.m contains all callbacks and GUI code for the main and ad-
vanced preferences GUI’s.

• pacspref.m contains all callbacks and GUI code for the PACS prefer-
ences GUI.

• loadpreferences loads the preferences file and stores the information
in the data structure. This function contains an important subfunction
called preferencesbackward that handles backward compability for
older Segment versions.

15.8 Tools superunit

The purpose of the image tool unit is to provide tools to perform on image
stacks.

Interactions

This unit uses the Calculation superunit to make calculations for some ad-
vanced tools, and the Helper functions superunits to check for existence of
image content to be copied to other stacks.

Datastructure

No specific datastructure is used for the tools.

Functions

(’There is no built-in undo function for this. Are you sure?’);

183

CHAPTER 15. UNIT IMPLEMENTATION

addnoise Callback(f)
Adds noise to current image stack.

anonymous Callback(silent,newname)
Makes a data set anonymous by removing

- PatientInfo.Name

- PatientInfo.ID

- PatientInfo.BirthDate

- FileName

- OrigFileName

- PathName.

anonymoustotal Callback(silent,newname)
Makes a data set completely anonymous by removing

- PatientInfo.Name

- PatientInfo.ID

- PatientInfo.BirthDate

- PatientInfo.Sex

- PatientInfo.Age

- PatientInfo.AcquisitionDate

- PatientInfo.Length

- PatientInfo.Weight

- PatientInfo.BSA

- PatientInfo.Institution

- FileName

- OrigFileName

- PathName.

applylight Callback
Apply current light setting to current image stack. Makes

permanent changes in the IM field.

autoesed Callback(silent,no)
Autodetect and store ED, and ES.

closesetimagedescription Callback
Close the gui for setting the image description.

copydownward Callback(type,silent,dolv,lvalg)
Copy segmentation in current slice downwards and refine.

184

15.8. TOOLS SUPERUNIT

copyforwardselected Callback(lv)
Copy segmentation of selected slices forward in time.

copytoalltimeframes Callback(type,silent,dolv)
Copies segmentation in the selected timeframe and slice to all timeframes.

type is either endo or epi.

silent is true if to avoid graphic update.

if dolv false then copy rv.

copyupward Callback(type,silent,dolv,lvalg)
Copies upward and refine.

type is either endo or epi.

silent is true if to avoid graphic update.

if dolv false then copy rv.

crop Buttondown(panel)
Buttondown function to crop the image stack.

crop Buttonup
Buttonup function for cropping of image stacks.

crop Motion
Motion function to crop the image stack.

[outx,outy] = cropcontour(inx,iny,isroi)
Used to crop and reinterpolate contours.

nos = crophelper(no0,xind,yind)
This function is the enginge in cropping.

cropspecial
undocumented function.

cropupdate(nos)
Update image after a crop.

disableundo(no)
Disable undo function. Also copies segmentation data

to make sure data is consistent.

duplicateimagestack Callback
Duplicates current image stack. This function breaks links to

linked datasets, parent and children.

185

CHAPTER 15. UNIT IMPLEMENTATION

enableundo(no)
Enables undo function in menus and icons. Also

copies old segmentation data so undo i possible

This should allways be called before routines that

change the segmentation.

enddiastole Callback(noupdate,single)
change current time frame to end diastole if there exists SAX with EDT and.

enddiastoleall Callback
Change current timeframe of all image stacks to end diastole.

endsystole Callback(noupdate,single)
Change current time frame to end systole.

endsystoleall Callback
Change current timeframe of all image stacks to end systole.

extraslice Callback(type)
Add an extra slice. Type is either ’basal’ or ’apical’

Takes also care of delineations.

flip Callback(dim)
Helper function to image stack flipping tools.

flipt Callback
Helper function to flip in t direction. Takes care of segmentation.

[a,b] = flipvars(b,a)
Flip variables. Simple and elegant.

flipx Callback
Flip x direction of current image stack.

Need to flip both x and z to maintain a righthand system.

flipx helper
Helper function to flip in x direction. Takes care of segmentation.

flipxy helper
Interchange z and t of current image stack. Takes care of segmentation.

186

15.8. TOOLS SUPERUNIT

flipxz Callback
Interchange z and x of current image stack. Takes care of segmentation.

flipy Callback
Flip y directon of current image stack.

Need to flip both y and z to maintain a righthand system.

flipy helper
Helper function to flip in y direction. Takes care of segmentation.

flipz Callback
Flip z direction of current image stack.

Need to flip both z and x to maintain a righthand system.

flipz helper
Helper function to flip in z direction. Takes care of segmentation.

flipzt Callback
Interchange z and t for current image stack. Takes care of segmentation.

imageenhancement Callback
Image enhancement using adapthisteq (CLAE), please see adapthisteq for

details.

imageinfo Callback(arg)
Displays image information of current image stack.

intensitycrop Callback
Crop intensities above and under HU threshold.

intensitymapping Callback
Plots intensity mapping function.

invertcolors Callback
Invert colors in current image stack (essentially 1-x).

Need to fix more to get intensity offset correct.

kspace Callback
Shows KSPACE of image (Fourier Transform). Displays the log of the

Fouries Transform.

187

CHAPTER 15. UNIT IMPLEMENTATION

mirrorx Callback
Mirros in x direction.

Need to flip both x and z to maintain a righthand system.

normalize Callback
Normalize image data of current image stack. Make sure image

intensities are in the range [0..1]. Also stores in so that

true image itensities can be retrieved, see calctruedata.

opensetimagedescription Callback
Open the gui for setting the image type, image view plane and

imaging technique for current image stack.

ok = orthogonalresamplecheck(no,dir1,dir2,str)
Check if can create orthogonal stack, give error message if not.

orthogonalresamplehelper(no,P,flipv,pos,newdimorder)
Helper function to transversal2sagittal (and more in the future), this

function should be genereric for all coordinate transformation if I have

not been thinking completly crazy.

precomp Callback
Function to make intensity precompensation of MR

gradient echo images. This function is somewhat obsoleted.

removeallbutedes Callback
Remove all timeframes in current image stack except diastole and systole.

removeallbutthistimeframe Callback
Remove all timeframes except current timeframe.

removecurrenttimeframe Callback
Remove current timeframe.

removeduplicatetimeframes Callback(duplicates)
Removes duplicate timeframes, askes for the number of duplicates. Two

means keep every second frame.

removenexttimeframes Callback
Remove next timeframe and upto and including last timeframe.

188

15.8. TOOLS SUPERUNIT

removeprevioustimeframes Callback
Removes previous timeframe and all frames to first timeframe.

removeselected Callback
Remove selected image stacks from current image stack.

removeslices Callback(ind)
Remove slices from current image stack.

removesliceshelper(ind)

removethis Callback
Remove current slice.

removetimeframes(ind)
Helper function to remove timeframes. This is the workhorse

when removing timeframes.

removeunselected Callback
Remove unselected slices from current image stack.

x = resamplehelper(f,x)
Helper function to resample image stacks.

factor 2 gives x’ = 2*x-0.5

factor 3 gives x’ = 3*x-1

factor 4 gives x’ = 4*x-1.5

factor 5 gives x’ = 5*x-2

factor 2.5 gives x’ = 2.5*x-1

factor 3.5 gives x’ = 3.5*x-1.5

factor 0.5 gives x’ = x’*0.5 (a odd)

factor 0.5 gives x’ = x’*0.5+0.5 (a even).

rotate90right Callback
Rotate current image stack 90 degrees right. Currently not working

properly.

setcolormap Callback(type,no)
Set colormap for current image stack.

189

CHAPTER 15. UNIT IMPLEMENTATION

setcurrenttimeframeasfirst Callback(applyto,showmessage)
Sets current timeframe as first time frame by cycling data in time.

Works with existing contours, but not general segmentation module, or

time resolved annotation points.

seted Callback
Set diastole to be current timeframe.

setes Callback
Set systole to be current timeframe.

setheartrate Callback
Set heart rate of current image stack.

setimagedescription Callback
Set the image type, image view plane and

imaging technique for current image stack.

setimageinfo Callback(arg)
Asks for and sets image details of current image stack.

slidingaverage Callback
Performs sliding average of an image.

smoothsegmentation Callback(no)
Smooth latest segmentation (LV, RV and ROI).

temporalmeanvalue Callback(silent)
Calculate temporal mean image by averaging over time.

translatecontour helper(dx,dy,translateimage)
Helper function to translate contours and image.

If translateimage is true then image is also translated.

Not yet supported:

- Scar

- MaR

- Pins

- Levelset.

translatecontours(dx,dy)
Translate all contours. Called by hotkeys.

190

15.8. TOOLS SUPERUNIT

x = translatecontours helper(x)
Fix out of bounds indices.

translatecontoursandimage(dx,dy)
Translate all contours and the image. Called by hotkeys.

transversal2coronal Callback
Takes a transversal image stack and converts it to a coronal image stack.

transversal2sagittal Callback
Takes a transversal image stack and converts it to a sagittal image stack.

undosegmentation Callback(no)
Revert segmentation from undo history.

unlinkimages Callback
Unlink images.

upsampleimage Callback(f,inputNO,silent)
Upsamples current image stack (in slice only). Takes care of

segmentation in the upsampling process.

newvol = upsampleinplane(f,vol,silent)
Helper function to upsample a volume vol.

newvol = upsampleslices(f,vol,silent)
Upsamples along last dimension.

Limitation input must be single or double.

upsampleslices Callback(f)
Upsample current image stack in slice direction. Takes care of

segmentation.

newvol = upsampletemporal(f, vol, varargin)
Helper function to upsample in time. f is factor and vol is volume to

upsample. Third argument is optional and is type;

(image, segmentation (default), and vector.

upsampletemporal Callback(f)
Usamples current image stack in time. f is upsampling factor.

Takes care of segmentation.

191

CHAPTER 15. UNIT IMPLEMENTATION

newvol = upsamplevolume2(f,vol,silent)
Helper function to upsample a volume vol. in this code f is a vector with

input [inplane x scalefactor, inplane y scale factor, temporal scale factor, slice scale factor].

viewpatientinfo Callback(arg,no)
GUI to view and adjust patient information.

viewtrueintensity Callback
View true image intensities in current timeframe and slice.

15.9 File superunit

The File superunit contains functions for loading, saving, transferring and
doing operations on files. An overview of its subunits and how they commu-
nicate is provided in Figure 5.

Figure 5: Overview of the internal structure of the File function superunit
and transaction analysis.

192

15.9. FILE SUPERUNIT

15.9.1 Open File unit

This is the GUI part of the file loader.

Interactions

This function interacts with:

• Main Segment superunit segment main with the renderstacksfromdicom,
setting title, clearing SET variable and other preparations for loading
data, enabling and disabling GUI options.

• Tools superunit with normalization.

• Image file reader unit to do the low level data reading.

Datastructure

The function heavily use the DATA.Preview field for communication with
the segment main in the loading process.

Functions

This subsection describes the subfunctions of openfile.m

outlabel = autodetectviewplane(imageorientation)
Automatically detect orientation.

bothmagnitudeandphase(no)
Called when image stack contains both magnitude and phase.

browsebutton Callback
Callback when user wants to browse for new folder.

cancelpushbutton Callback
Dismiss the figure.

continueloading
This function is called from cropbox buttondown.

It continues to load the whole images stack and finally call Segment

to tell that finished loading one image stack.

193

CHAPTER 15. UNIT IMPLEMENTATION

[im,tempmax] = contrastfixer(im)
Takes a 2D image that should be presented and crops the histogram

somewhat. This is particularly important if there are some pixels that are

very bright (overlayed images with timestamp from old Siemens machines

are one such example.

tempmax is the maximum value that the image is truncated to.

[im] = contrastfixerrescale(im)
Same as contrastfixer, but scales between 0-1

tempmax is the maximum value that the image is truncated to.

cropbox
Called from continue loading and sets up GUI to ask user to select region

of interest to load.

cropbox buttondown
Buttondown function for crop. This is equal to select.

cropbox motion
Motion function for cropbox.

dicomsorter Callback
Simply calls dicomsorter, but with current folder.

enablesegmentgui(no)
Helper function that enables vital GUI options in main gui.

exitgui
Quits and exits the gui.

factor Callback
Help function to split number of selected frames in to prime numbers.

filtercheckbox Callback
This refreshes and thus enables filtering to be displayed.

z = getfilenumber(stri)
Take only the last digits of a filename if numbers exist.

files2load = getfiles2load(ind2load)
Gets files to load as a cell removes chache files, dicom dirs, .seg files

etc.

194

15.9. FILE SUPERUNIT

getpathinfo
Scans directory and builds a structure of

relevant information. The function populates the file listbox

and stores DATA.Preview.FileList variable

If there is a directory, return the number of files.

If it is a file, simply the filename

Later add also if it is selected.

The generated information is stored in the file folders.cache in every

folder Segment visits. This function also handles saving, loading and

regenerating this cache when needed.

[hasdcm, description] = getseriesdescription(folder, varargin)
Assumes that folder is a folder with a DICOM image series (one or more dicom

files).

In the second optional argument a list of files in the directory can be

passed, in the same format as the matlab builtin dir() returns. This is

useful when a dir (this function needs the results of one) is expensive,

such as when listing very large directories on a network share (why this

is expensive nobody knows).

Searches for the first dicom file, and creates a nice string with a

description (max. maxlength characters long). Used in getpathinfo.

hasdcm is true if a dicom file was found, false otherwise.

If hasdcm is false, ’Unknown’ is returned.

If the function can’t come up with a nice description, ’Unknown’ is

returned.

initiconholder

initset(no)
Initialize the set structure.

keypressed(fignum,evnt)
Helper function to handle keypressed events.

loadandmerge Callback
Loads one image at a time and attempts to merge them.

195

CHAPTER 15. UNIT IMPLEMENTATION

loadfiles(dicomfiles, showprogress, cropbox)
Load files.

loadmultidataset(setstruct)
Load .mat file. Sets up display and exits GUI and return back to segment.

loadpreview
Loads a preview of, the function takes a filename or a

pathname.

loadpushbutton Callback
This function is called when user press load.

motionfunc

ote that the function only works for non time resolved ’ ...
’images. Are you sure you want to continue?’]));

Uturn;.

pathlistbox Callback(updir)
This function is called when user selects something

in the file/dir selection listbox. If called with on

input variable then go up one directory level.

plotslicelocation Callback
Plots graphical display of slicelocation of DICOM files.

refresh Callback
Refresh GUI.

roisizelistbox Callback(insize)
Callback for ROI size selection.

selectall Callback
Select all files callback.

setimagetype Callback
Set image type callback.

setimageviewplane Callback
Set image type callback.

196

15.9. FILE SUPERUNIT

setimagingtechnique Callback
Set imaging technique callback.

setupstacksfromdicom(no)
This function is called when managed to load an image volume from DICOM

files. It is essential for enabling, and setting up things.

setupstacksfrommat(no)
This function is called when managed to load an image volume from mat

files. It is essential for enabling, and setting up things.

sortdicomfolder Callback
callback for sort the selected DICOM folder.

updir Callback
Fake a double click on ..

15.9.2 Image file reader unit

This is the reader of .mat files and DICOM files. The file segloader.m

defines a class used for loading files into Segment, the file segdicomtags.m

defines a class for handling DICOM tags and the file segrawstack.m de-
fines a class used for rendering Segmentimage stacks from DICOM data.
This class also has a subclass defined in rotrawstack.m for loading image
stacks where the image plane has been rotated between capture of slices.
For loading DICOM images, a segloader.m object is created, which in turn
creates a segdicomtags.m object for keeping track of DICOM tags, and a
segrawstack.m or rotrawstack.m object for rendering an image stack.

Interactions

Interactions are negligible.

Datastructure

No use of shared datastructures occurs.

197

CHAPTER 15. UNIT IMPLEMENTATION

Functions in segloader.m

adddicomfiles(self, filenames)
Adds DICOM files to the object.

addmatfile(self, filename)
Adds a mat file to the object.

r = getpreviewdata(s, fname)
Gets an element from a struct if it exist and has type char.

else return ’’. Used for generating preview.

h = hour(tfrac)
Convert from tfrac to hours.

[r, imaxis] = isrotated(self)
Checks if the loaded files is a rotated image stack.

eq = linecmp(line1, line2)
Used to compare two lines generated by uniquelines.

(Accepting some errors).

m = minute(tfrac)
Convert from tfrac to minutes.

curdicoms = removeduplicates(curdicoms)
Removes any duplicates in curdicoms.

[type, r] = render(self, datapath, cropbox)
Renders the images in the loader object to a

Preview or a set struct suitable for passing on

to segment.m.

[im, desc, filetype, resolutionx, resolutiony, cancrop] = renderpreview(self)
Renders a preview of the files in the loader object.

r = renderrotstacks(self, datapath, cropbox, lines, imaxis)
This rendering method is used when the files loaded are

dicom files. It’s called from the render method.

r = renderstacks(self, datapath, cropbox)
This rendering method is used when the files loaded are

dicom files. It’s called from the render method.

198

15.9. FILE SUPERUNIT

s = second(tfrac)
Convert from tfrac to minutes.

self = segloader()
Constuctor. Initiate all properties.

setpreviewmode(self)
Set preview mode to on.

r = uniquelines(self)
Get all the unique lines from the dicom files in the loader object.

A line consist of the orientation vectors (vector parallel to

the x and y axis of the picture) and a projection of the

imageposition onto the subspaces that the orientation vectors

span. We need this projection to separate projection to

separate stacks with the same orientation but diffrent positions.

r = uniquenormals(self)
Gets all the unique normal from the dicom files in

the loader object. Used in isrotaded method.

Functions in segdicomtags.m

a = addstructs(a, b)
Add fields from struct b to struct a.

implicit = checkFunctionalGroup(group, groupnames)
Check functional groups to see if they are implicit.

createnewtags(self)
Create a new struct of tags.

r = getaccessionnumber(self)
Returns the accessionnumber field.

r = getacquisitiontime(self)
Returns the Acquisition Time.

r = getbitsstored(self)
Returns the BitsStored field.

199

CHAPTER 15. UNIT IMPLEMENTATION

r = getechotime(self)
Returns the Echo Time.

r = getflipangle(self)
Returns the FlipAngle field.

images = getimages(self)
Return the images contained in the dicom file.

The return data will be a struct with the fields

’im’ - The pixeldata as NxM single matrix

’spacetimepos’ - the position of the image in space and time

’triggertime’ - The trigger time of the image

’instancenumber’ - The instance number of the image

’multiframenumber’ - The position in PixelData buffer of

the image.

images = getimagesframetime(self, nFrames)
Used by get images when numberofframes are greater

then one and the frame incremental pointer

is set to frametime.

images = getimagesmultirrtimeslice(self, nFrames)
Used by get images when numberofframes are greater

then one and the frame incremental pointer

is set to rr timeslice.

images = getimagesmultislice(self, nFrames)
Used by getimages as a default multiframe parser.

images = getimagessingleframe(self)
Used by get images when there is only

one frame.

r = getimagetype(self)
Returns the image type.

r = getinstancenumber(self)
Returns the instance number of the dicom.

line = getline(self)
Gets the line of the image. A line consist

of the orientation vectors and the projection

of the position onto the orientation vectors.

200

15.9. FILE SUPERUNIT

r = getmodality(self)
Returns the Modality.

normal = getnormal(self)
Returns the normal to the picture, that i

the cross product of the orientation vectors.

r = getnumberofaverages(self)
Returns the NumberOfAverages field.

orientation = getorientation(self)
Get the orinentation vectors as a 2x3 matrix.

r = getpatientinfo(self)
Returns a Patientinfo struct with fields

’PatientName’

’PatientID’

’PatientBirthDate’

’PatientSex’

’PatientAge’

’HeartRate’

’AcquisitionDate’

’PatientWeight’.

r = getphotometricinterpretation(self)
Returns the photometric interpretation.

pixelData = getpixeldata(self)
Parses and returns the PixelData field.

pos = getposition(self)
Returns the image position in 1x3 vector.

r = getrepetitiontime(self)
Returns the RepetitionTime.

r = getresolutionx(self)
Returns the resolution in the x direction.

r = getresolutiony(self)
Returns the resolution in the y direction.

201

CHAPTER 15. UNIT IMPLEMENTATION

scanner = getscanner(self)
Return the scanner based on the Manufacturer tag.

r = getsegmentdata(self)
Parses and returns the SegmentData.

r = getsequencename(self)
Returns the Sequence Name.

r = getseriesdescription(self)
Returns the SeriesDescription.

r = getseriesnumber(self)
Returns the Series Number.

z = getsliceposition(self)
Returns slice position.

r = getslicethickness(self)
Returns slicethickness.

r = getspectspecialtag(self)
Returns a special tag used in SPECT images.

r = getstudyid(self)
Returns study id field.

r = getstudyuid(self)
Returns the study instance uid.

r = gettriggertime(self)
Returns the trigger time of the image.

type = gettype(self)
Find the image type of a dicom image

Old values for type is

0: ’mag’, 1: ’phase’, 2: Unknown, 3: Unknown.

r = getvelocityencodescale(self)
Returns the VelocityEncodeScale field.

202

15.9. FILE SUPERUNIT

r = getvenc(self)
Returns the venc.

r = getvencpos(self)
Returns the vencpos.

Magnitude images get number 1, through-plane flow gets number 2.

The other directions are more tricky - Philips and Siemens do it

differently.

Velocity directions:

PhilipsVENC Siemens Flow Segment

example SequenceName dir. vencpos

--

[100 0 0] ends in ’rl’ RL/L 2

[0 100 0] ends in ’ap’ AP/P 3

[0 0 100] ends in ’fh FH/S 4

------- ends in ’in’ (*) (*)

*: Siemens datasets so far contain ’in’, ’ap’ and ’fh’ stacks.

The ’in’ stack is just ’through-plane’, so we have to figure

out which direction it is by looking at ImageOrientation.

r = haspixeldata(self)
Checks to see that there is pixeldata.

r = hasrepetitiontime(self)
Returns the Repetition Time.

r = hassegmentdata(self)
Returns true if the tag SegmentData is present.

r = hastriggertime(self)
Returns true if has trigger time information.

r = hasvelocityencodescale(self)
Returns true if VelocityEncodeScale field is set.

r = ignoreme(self)
Returns true if this image should be ignored from the loading

process.

203

CHAPTER 15. UNIT IMPLEMENTATION

r = isduplicate(self, other)
Checks if other is the same as self.

r = parsefloatstr(data)
Parses a string with a number as a

number of type double.

r = parsesingle(data)
Parses a uint8 matrix with four elements as

a single number of type single.

timenum = parsetime(timestr)
Parse a dicom time string as number of seconds.

r = parseuint16(data)
Parses a uint8 matrix with two elements as

a single uint16 number.

dicoms = readfiles(files)
Returns a matrix of segdicomtags objects

contaion DICOM info from ’files’.

[s,ind] = removechars(stri)
Removes everything except numbers and ’.’

from a string.

self = segdicomtags(tags)
Constructor. Sets the tags property.

r = spacetimepos(self)
returns the spacetimepos of the images.

switchtags(self)
Switch to new tags.

r = unpack(self)
Unpack data from dicom file.

tags2find = unpackhelper(tags2find,nested2find,sequence,explicit)
Helper function to unpack data. EH:.

204

15.9. FILE SUPERUNIT

Functions in segrawstack.m

r = checkifcommon(self, method)
Calls ’method’ for all dicom files in the

rawstack object. If all return values are the same

return true. If not return false.

cropbox = fixcropbox(self, cropbox)
If cropbox is invalid or empty return a cropbox

that doesn’t crop anything.

vencskip = fixphases(self)
Make sure phases are numbered from 1 to numphases.

That is remove ’holes’ from the phase numbering.

r = getaccessionnumber(self)
Returns acessionnumber. Takes the accession number from the first

image.

r = getacquisitiontime(self)
Return the first (lowest) aquisitiontime found

in the dicom files.

r = getbitsstored(self)
Return BitsStored if all dicoms agree else throw error.

dimsizes = getdimensionsizes(self, cropbox)
Gets the size of each dimension, i.e number of frames,

depth, x-size, y-size.

r = getechotime(self)
EH: If different values then return a vector

This is necessary since a "timeresolved" image stack

may have different echo times. This feature is used for

T2/T2* mapping. See the function t2star.m for more details.

r = getflipangle(self)
Return flipangle if all dicom files agree else

return 0.

r = getifcommon(self, method)
Calls ’method’ for all dicom files in the

rawstack object. If all return values are the same

return that. If not throw error.

205

CHAPTER 15. UNIT IMPLEMENTATION

r = getimagetype(self)
Returns image type if all dicoms agree else return

’Mixed Image Types’.

r = getmodality(self)
Return modality if all dicoms agree else throw error.

r = getnumberofaverages(self)
Return number of averages if all dicom files agree else

return 1.

r = getpatientinfo(self)
Return patient info struct if all dicoms agree.

If they don’t agree try setting all heartrates to

zero and return if they agree. If that didn’t work

either throw error.

r = getrepetitiontime(self)
Return the repetitiontime if all dicom

files agree else return 0.

r = getresolutionx(self)
Return resolutionx if all images agree else throw error.

r = getresolutiony(self)
Return resolutiony if all images agree else throw error.

r = getscanner(self)
Return scanner if all dicom files agree else throw error.

r = getsequencename(self)
Returns sequence name if all dicom files agree else

return ’Mixed Sequence Names’.

r = getseriesdescription(self)
Return series description if all dicom files agree

else return ’Mixed Series Description’.

r = getseriesnumber(self)
Return series number if all dicom files agree

else return 0.

206

15.9. FILE SUPERUNIT

r = getslicethickness(self)
Return slicthickness if all dicom files agree else

return 1.

r = getspectspecialtag(self)
Return spect special tag if all dicoms agree else throw error.

r = getstudyid(self)
Returns StudyID. Takes StudyID from first image. Should be same for

all images in the entire study.

r = getstudyuid(self)
Return study uid if all dicoms agree eles throw error.

r = gettimeincr(self, nFrames)
Calculates the timeincrement. If there is only one frame

return 0. If one can’t find any triggertime information

return 1000/(nFrames - 1) (that is totaltime should be 1 second).

[r,sortind] = gettimevector(self,tsize)
Return time vector from acquisiontimes, if available.

r = getvenc(self)
Return venc if all images agree or some images

agree and other specify zero. Else throw error.

r = hascollisions(self, imbase, offset)
Returns true if two images in the object gets

the same coordinates using imbase and offset.

stri = hascollisionshelper(self,impos)
Returns error message with appropriate slice distances.

r = hasrepetitiontime(self)
Return true if all dicom files has repetition time.

r = hastriggertime(self)
Returns true if all dicom files has trigger time.

r = ismatch(self, dicom)
Check if a dicom files has the same line as all dicom files

should have in this stack.

207

CHAPTER 15. UNIT IMPLEMENTATION

[base, offset] = makeimbase(self, dimsizes)
Return a base for the loaded image stack.

im = makeimdata(self, imbase, offset, dimsizes, cropbox)
OCombines all images in the stack to an im suitable for SET.im.

r = render(self, datapath, cropbox)
Renders the dicom files and images in this stack

to a preview and set struct suitable for

passing on to segment.m. If cropbox == []

load entire image.

self = segrawstack(line)
Constuctor. Initiate all properties.

setdicoms(self, dicoms)
Takes a list of segdicomtags objects and saves

them in self.dicoms. Also save the images they

contain to self.images.

settimes(self, dimsizes, timeDist)
Set the self.images(:).spacetimepos(4),

that is time coordiante, according to

timeDist and a certain sorting.

Functions in rotrawstack.m

dimsizes = getdimensionsizes(self, cropbox)
Gets the size of each dimension, i.e number of frames,

depth, x-size, y-size.

r = hascollisions(self, imbase, offset)
Returns true if two images in the object gets

the same coordinates using imbase and offset.

r = ismatch(self, dicom)
Check if a dicom files has one of the lines in this stack.

[base, offset] = makeimbase(self, dimsizes)
Return a base for the loaded image stack.

208

15.9. FILE SUPERUNIT

im = makeimdata(self, imbase, offset, dimsizes, cropbox)
Combines all images in the stack to an im suitable for SET.im.

r = render(self, datapath, cropbox)
Renders the dicom files and images in this stack

to a preview and set struct suitable for

passing on to segment.m. If cropbox == []

load entire image.

self = rotrawstack(lines, imaxis)
Constuctor. Initiate all properties.

15.9.3 DICOM file write unit

Writing DICOM files from Segment is implemented by the class segdicomfile.

Interactions

Interactions are limited to calling arguments from the class creator.

Datastructure

No use of shared datastructures occurs.

Functions/methods in segdicomfile.m

create(filename, data, study uid, pat name, pat id, ...
pat birth, pat sex, switchtags)

RCreats a dicom file. Serialize data arg and.

mem = create chunk(indata)
ESerializes a 1xn cell array of uint8 1xn arrays.

str = create chunk va(varargin)
Avarargin shortcut to create chunk.

r = create metaheader(instance uid)
EReturns a memorybasket containing a dicom.

r = generate uid()
EReturns a new random UID (uses the matlab root UID).

209

CHAPTER 15. UNIT IMPLEMENTATION

tags = get tags()
EReturns a tags struct with tag names as fieldnames and tag as value.

tag = name to tag(name)
OConvert a tag name to a tag.

outdata = parse chunk(data)
NInverse of create chunk.

varargout = parse chunk va(data)
Avarargout shortcut to parse chunk.

stri = secondtostring(t)
Nonverts from seconds to a timestring with hhmmss.sss.

r = serialize(data)
ESerializes a matlab variable. Return a [1xn] uint8 array.

r = serialize cell(data)
ESerialize a cell array, doesn’t mind shape.

r = serialize char(data)
ESerialize a char array, doesn’t mind shape.

r = serialize logical(data)
ESerialize a logical array, doesn’t mind shape.

r = serialize struct(data)
ESerialize a struct array, doesn’t mind shape.

data = unserialize(r)
NUnserialize [1xn] uint8 array r to a matlab variable.

data = unserialize cell(r)
NUnserialize a cell array, doesn’t mind shape.

data = unserialize char(r)
NUnserialize a char array, doesn’t mind shape.

data = unserialize logical(r)
NUnserialize a logical array, doesn’t mind shape.

data = unserialize struct(r)
NUnserialize struct array, doesn’t mind shape.

write tag(mem, tag name, vr, data)
RWrites a dicom tag (little endian explicit VR.

210

15.9. FILE SUPERUNIT

15.9.4 Database unit

The purpose of the patient database unit is to allow a simple access to both
DICOM data and analysed .mat files.

Interactions

The data base is stored in a file called patientdatabase.mat. The location
where the patient database is set in the preferences. In the unit there is a
timer that scans the index file and checks if that have been updated every
30 seconds. It looks at a timestamp to prevent for loading the entire file. In
the same folder as where the patient database index file is stored there are
three folders:

• Analysed this folder contains all .mat files. On the highest level there
are folders with patient names. In the second level there are the study
date, that each is a folder that contains .mat files. Characters that are
not valid filename are removed by the function removeforbiddenchars.m.

• DICOM this folder contains all DICOM files. They are sorted into sub-
folders. The files are sorted according to the following system, where
on the top level there are folders with patient name with an underscore
and patient id (i.e ALF A Bete 19730101010101). The names are con-
verted to only allow valid filename characters and spaces are changed
to an underscore. Removing forbidden characters are performed by
the function removeforbiddenchars.m. On the second level there are
the studydate, a dash the characters ID, a dash and the for last dig-
its of the studyuid (i.e 20061204-ID-7232). On the next level there
are folders with series and in each folder there are DICOM files. In
this folder there is also stored a file called thumbs.cache, this file con-
tains thumbnail previews of all the series. For more details, see the
file thumbnails.m for details. If changes are made to the design of
this filestructure, corresponding changes should also be made in the
Segment DICOM server.

• Report this folder stores the html reports created by the Report Sheet
unit. Please see the Report Sheet unit for further details.

• TEMP this folder is used to temporarily retrieve images in the PACS
connection. When images have been retrieved they are automatically

211

CHAPTER 15. UNIT IMPLEMENTATION

moved to the patient database. It should not be necessary to manually
remove files from this folder.

• TEMPSTORAGE this folder is used by the Segment Server to temporarily
store received files. After sorting they are automatically stored in the
patientdatabase. It should not be necessary to manually remove files
from this folder.

Datastructure

The patient database function contains a global variable called DB.

• Handles stores the handles of the GUI.

• NumStudies contains the number of studies.

• CurrentStudy points to the current study.

• SortList is a vector and contains the current sorting of the studies.

• ExportList contains a list of studies to be exported to PACS.

• Hostname contains hostname for exporting studies.

• Port contains port for exporting studies.

• Called AE contains Called AE for exporting studies.

• StoreSCU contains the StoreSCU for exporting studies.

• folder2load contains the folder to load data from, used in importing
studies from disc or CD.

• DateNum contains a timestamp when the database was last loaded from
disc.

The datastructure for the patient database is as follows:

• PathName a full path to where the study is stored.

• IsDicom binary variable, true if the study is in DICOM format.

• Name a string containing the name of the subject.

• ID a string containing the ID of the subject.

• Sex a string containing the sex of the subject. May also be empty if
not known.

212

15.9. FILE SUPERUNIT

• StudyDate a string containing the study date as reported in the DI-
COM files or in the .mat file.

• ReceivedDateNum the time when the study was imported or stored in
the database in numeric format (same format as the now command).

• ReceivedDateString the time when the study was imported or stored
in the database in plain text format.

• Modality as recorded in the DICOM or in the .mat file.

• FileFormat is either Dicom or Segment.

• CommentPath reserved for future use, currently empty.

• Mem contains the amount of memory the study takes on disk (in bytes).

If the database needs to be moved, all the references in the database needs
to be recomputed. This can be done by rebuilding the database (available
from the menu). This also helps if the database for some reason have become
corrupted.

Functions

The function is called patientdatabase.m, and also calls the function
patientdatabaseaddstudyhelper.m.

15.9.5 PACS unit

The purpose of the PACS unit is to enable Segment to connect to a hospital
PACS system and retrieve images. The functionality of the PACS connec-
tion unit is documented in detail in the Patient Database Manual and PACS
Communication Manual.

All low level communication is performed by the DCMTK toolkit (for docu-
mentation see http://support.dcmtk.org/docs/index.html). Searches can be
performed both on patient level and study level.

Interactions

All interactions with Segment is performed through the patient database.

213

CHAPTER 15. UNIT IMPLEMENTATION

• The connections are stored as structs in .mat files, and is stored in the
Segment main folder.

• Logfiles are stored in the same folder as where the preferences are
stored.

• It is also possible to store batch files for downloading. They are also
stored as .mat files.

• Temporarily files in the download process are stored into the folder
TEMP located in the same place as where the Patient Database is stored
(this is configured in the preferences menu).

Datastructure

The internal data used by the GUI is stored in the mygui struct.

Functions

The PACS connection unit uses slaves that operates as different processes
for the actual retreival and then in a loop checks that all the files have been
received and updates the waitbars as appropriate. This usage of slaves is
to prevent Segment to just go into a sleep mode while retrieving since we
use DCMTK binaries for the recieve operations. This also have the ad-
vantage of splitting the work over multiple cores if available. The commu-
nication between the slaves are performed by inbox files and outbox files.
These inbox files are stored in the same folder as where the preferences are
stored. The underlying client-server functions are implemented in the class
myclientserver.m. The communication is as ordinary ascii files and the
protocol is defined in encodemessage.m, and decodemessage.m. The actual
work is performed by a compiled function called slave.

Adding studies to the patient database is done by calling the function
patientdatabaseaddstudyhelper.m.

15.9.6 Segment Server unit

The Segment Server unit is a standalone software that turns the computer
into a DICOM server that can receive image data directly from an MR scan-
ner.

214

15.9. FILE SUPERUNIT

Interactions

This unit interacts with the Database unit to add received studies to the
patient database.

Datastructure

The DATA variable is used to extract network options. The unit also uses its
own global variable SERVER to keep track of its state.

Functions

Functions are contained in the main file segmentserver.m as well as the file
segmentserverhelper.m used for interactions.

15.9.7 File menu unit

The File menu unit contains functions called from the File menu.

Interactions

This unit calls the Openfile and Database units when the user accesses them
through the File menu.

Datastructure

No use of shared datastructure occurs.

Functions

closecurrentimagestack Callback(frompreviewmenu)
Close current image stack, i.e the current image stack is deleted. It

also takes care of eventual cross couplings between image stacks.

loadednext = loadnext Callback
Load next .mat file in the current data folder.

loadsegmentation Callback(pathname,filename)
Loads segmentation to current image stack from a .seg file.

quit Callback
Quit Segment.

215

CHAPTER 15. UNIT IMPLEMENTATION

saveall Callback
Saves all image stacks to one .mat file. Calls GUI method

filesaveallas Callback which is the workhorse when saving image stacks.

fail = saveallas helper(pathname,filename,topatientdatabase)
Save all image stacks to the file specified. It also stores current view

and modes etc.

savecurrent Callback
Save current image set to file. Note that this is the old Segment file

format and this fcn may soon be depreciated.

savesegdicom Callback(filename)
Save image stack as DICOM file.

savesegmentation Callback(pathname,filename)
Saves segmentation as a .seg file. This way of saving contours is not

recommended and may be depreceiated.

savetopacs Callback
Send image stacks to PACS. This function should display a list of

available PACS (.con files) and when user has selected store files on disk

temporarily and then send the files to the PACS.

savetopatientdatabase Callback
Callback to save image stacks to patientdatabase. Uses functions in

patientdatabase.

15.9.8 Utility unit

The utility unit contains tools that operates of files (.mat files or DICOM files)
rather than the loaded image data.

Interactions

The Calculation superunit is called to calculate image data. The Open File
unit is called to open files.

Datastructure

The utility uses and also generally resets the SET structure so that unsaved
image data is lost.

216

15.9. FILE SUPERUNIT

Functions

’This function recommends that you set RV insertion points in or-
der to have the bullseye correctly rotated. If no insertion points are marked then cur-
rent rotation are taken.’);

’This function recommends that you set RV insertion points in or-
der to have the bullseye correctly rotated. If no insertion points are marked then cur-
rent rotation are taken.’);

ahaexporthelper(type)
Helper function to export in 17 segment model.

type = basalselectionhelper
Helper function to select what to do with basal slices.

batchredotracking
Redoes registration for folder of mat files and checks that upsampling is

correct.

clearsegmentationmultiple Callback
This function clears the segmentation in multiple .mat files.

This is useful for instance in research and when second observer

analysis is required.

newv = dividein3(v)
Divide vector in 3 parts and take mean over them.

findindicomfiles Callback
recursevily finds .mat files in selected directory and exports data on

patient info and file location. Uses some heuristic to avoid checking all

files.

findinmatfiles Callback
recursevily finds .mat files in selected directory and exports data on

patient info and file location.

init
Initialize utilitymenu, called upon starting of Segment.

Calls private initialization method which adds private

utilities for Medviso AB and Lund Cardiac MR Group.

217

CHAPTER 15. UNIT IMPLEMENTATION

marexport Callback
Export mar in 17 segment model.

[nfound,line] = numexist(outdata,rows,name,id)
Helper function to findindicomfiles.

scarexport Callback
Export scar in 17 segment model.

[startslice,endslice] = sliceselectionhelper(no,type)
Helper function to select slices depending on how to include basal slices.

See basalselectionhelper for further details.

twelvesectorexport Callback(type)
Helper function to export in 12 segment model.

utilityanonymizemultiple Callback(pathname,type)
Anonymize multiple datasets from .mat files in a folder.

utilitycopyandsortfromcd Callback
Utility function to copy and sort files from CD. Uses helper function

dicomsorter to do the work.

utilitygrayzone
Add grayzone utilities.

utilitygrayzoneexport
Export grayzone analysis values.

utilitygrayzonesliceexport
Export grayzone analysis values for each slice.

wallthicknessexport Callback
Export wall thickness in 17 segment model.

15.9.9 Sectra unit

The Sectra unit contains the Segment side implementation of the Sectra
PACS plugin. It consists of a timed function that repeatedly checks for in-
coming data from a Sectra PACS system (once every second). This is started
in the function sectra.m.

218

15.9. FILE SUPERUNIT

Sectra Process

On the sectra side, there is a code called segment segmentplugin32.dll or
segmentplugin64.dll that is upon starting the Sectra interface is loaded
and associated with the process. Once the user clicks on Clinical applica-
tions and Segment, then the code is invoked.

The first thing the dll files does is look for an open Segment (this is done by
looking for window names using Windows API). It looks for windows that
starts with ’Segment’ followed by space. Note that this might need to be
changed when renaming future products. This check is done in pipe.cpp.

The principle is that the plugin sends all DICOMs on the series level to
the Segment process by the usage of pipes. First a ’dummy’ DICOM is
sent as preview file. This was required for the old DICOM file loader. The
DICOMs to send is found by parsing the Sectra API and asking for images.
Please not there seems to be several bugs in the API that crasches Sectra.
This is documented in the code. The challenge in the process is to convert
data from Sectra API to usable DICOM files. The documentation to the
Sectra API is on their SDK and in this there is a Windows help file. The
SDK needs to be installed in order to be able to compile. For details on
how to compile the plugin, please see Chapter 18. The SDK is available
from http://userweb.sectra.se. Username and password is documented
in wiki:SectraPlugin. The name of the code and details needs to be same
for 32 and 64 bit. If both are registered then Sectra is able to automatically
determine the correct version to run.

Interactions

This unit calls the Openfile unit to load data from the Sectra PACS.

Datastructure

No use of shared datastructure occurs.

Functions on Segmentside

initsectra
Starts the SECTRATIMER. The timer

219

CHAPTER 15. UNIT IMPLEMENTATION

executes function loadsectra every second.

loadsectra
Load files from sectra pacs.

varargout = sectra(varargin)
Switchyard for sectra module.

stopsectra
Stops the SECTRATIMER (if it’s running).

Files on plugin side

• maindll This is a main template file from the SDK.

• sectracontrol This file is related to the interface such as status texts
etc.

• pipe This is the main file written by Jonatan. First it finds Segment,
and then starts Segment(unless it is already started). The file contains
of the following sections:

1. write info writes the control file/info file

2. write dicom called by server thread

3. server thread this file can be seen as the main function that
created the pipes by calling the subfunction create named pipe.
The function Connect Named Pipe takes time and waits for some
one to read.

• write dicom Writes the DICOM files. The term dicomattrib is the
Sectra name standard and corresponds approximately to dicomtags.
The Sectra term Pyramid corresponds approximately to one DICOM
file. The preview file is as mentioned above legacy and is not used. Each
time a file is sent them check for errors are performed. The function
SendVR uses get VR by Sectra API. The function SendData sends data
depending on VR and peforms changes in the data representation.

220

15.10. ANALYSIS SUPERUNIT

15.9.10 External PACS unit

The External PACS unit consists of a Segment side implementation of the
External PACS plugin and a standalone application that is called when data
is sent from the external PACS system, starts Segment (if not already open)
and sends instructions to it on what data to open. The Segment side imple-
mentation consists of a timed function that repeatedly checks for incoming
data from the standalone application.

Interactions

This unit calls the Openfile and Patient Database units to load data from
the external PACS.

Datastructure

No use of shared datastructure occurs.

Functions

varargout = externalpacs(varargin)
Switchyard for EXTERNALPACS module.

initexternalpacs
Starts the EXTERNALPACSTIMER. The timer

executes function loadexternalpacs every second.

loadexternalpacs
Load files from EXTERNALPACS pacs.

stopexternalpacs
Stops the EXTERNALPACSTIMER (if it’s running).

15.10 Analysis superunit

The Analysis superunit contains functions for performing special kinds of
analysis on image stacks.

15.10.1 Relaxometry unit

The purpose of the the relaxometry unit is to analyse MR relaxometry, and
specifically T1, T2, and T2* relaxometry.

221

CHAPTER 15. UNIT IMPLEMENTATION

Interactions

Interaction by reading data directly from SET structure and store data there.

Datastructure

The image information on which to operate is taken from the SET struct and
the stack number is taken from NO variable. SET is also used for storing the
derived maps.

Functions

y = MAGIR(P,t)
Babs(P(1)-P(3)*exp(-(t)/P(2)));.

y = MAGIR2(P,t)
Babs(P(1)*(1-P(3)*exp(-(t)/P(2))));.

y = MAGIR 2p(P,t)
Babs(P(1)*(1-2*exp(-(t)/P(2))));.

y = MAGSR 2p(P,t)
Babs(P(1)*(1-exp(-(t)/P(2))));.

y = PSIR(P,t)
P(P(1)-P(3)*exp(-(t)/P(2)));.

y = PSIR2(P,t)
P(P(1)*(1-P(3)*exp(-(t)/P(2))));.

y = PSIR 2p(P,t)
(P(1)*(1-2*exp(-(t)/P(2)));.

y = PSSR 2p(P,t)
(P(1)*(1-exp(-(t)/P(2)));.

mask = calcmask(region)
Calculate mask depending on selection of regional restriction

(myocardium, ROI’s or full image).

calctxmap(sliceno)
Calculates a map.

222

15.10. ANALYSIS SUPERUNIT

climedit Callback(v)
Callback for edit box of display limit.

climslider Callback(v)
Callback for slider to set display limit.

close Callback
Close GUI.

colorbarhelper
Helper function to display colorbar.

copyroislices(n)
copy ROI one slice downward.

createimagestacks Callback
Output of image stacks containing raw T2/T2* map, smoothed T2/T2* map and

resolution map.

endline Buttondown
Buttondown function for line indicating end of time period to fit.

endline Buttonup
Buttonup function for line indicating start of time period to fit.

endline Motion
Motion function for line indicating start of time period to fit.

export Callback()
Export data to clipboard.

titlestring = getresulttext(guiname, k, tx, sat, info)
Updates result string.

globalfit
Plots a global fit plot.

init(varargin)
mode = 1, 2, 3; 1 gives T1; 2 gives T2; 3 gives T2*.

magpoint Buttondown
User clicked on image gives show fit.

223

CHAPTER 15. UNIT IMPLEMENTATION

magpoint Buttonup
Buttonup function for magpoint in image.

magpoint Motion
Motion function for dragging magpoint in image.

menu nbrofparameters Callback(nbrofparameters)
Get number of parameters from menu.

menu plothist Callback(numbinsin)
Callback to plot histogram.

menu roiselect Callback(roinbr, asktocopy)
manual select which ROI to perform Tx analysis on.

y = monoexp(P,t)
(P(1)*exp(-(t)/P(2));.

y = monoexp offset(P,t) %Magnitude images only since we assume the off-
set is a positive value.

(P(1)*exp(-(t)/P(2))+abs(P(3));.

movedown Callback()
Move down callback.

moveleft Callback()
Move left callback.

moveright Callback()
Move right callback.

moveup Callback()
Move up callback.

[dx, dy, xlim, ylim] = moveview module(ax,dxfactor,dyfactor)
Function to move zoomed in views in the T2* module.

[xlim, ylim] = moveview restore(ax,dx,dy)
Restore the old view.

parameter Callback(mode)
Callback from parameter selection radiobutton.

224

15.10. ANALYSIS SUPERUNIT

plotfit Callback(fitmode)
update the fit plot according to mode.

point down
New function to control up movement using the keyboard (w):.

point left
New function to control up movement using the keyboard (w):.

point right
New function to control up movement using the keyboard (w):.

point up
New function to control up movement using the keyboard (w):.

recalc Callback(slicestocalc, waitbartext)
Recalculate previously processed maps and make graphical updates.

data2 = resortsegdatatime(data)
Resort the data into the correct order.

restriction Callback(type)
IMPORTANT: Check compatibility with function "setregionrestriction"

Callback for selection of regional restriction (myocardium, roi or full

image).

resultpoint Buttondown
User clicked on image gives show fit.

resultpoint Motion
Motion function for dragging resultpoint in image.

dofullmap = setmasks()
Bobal DATA guiname.

setregionrestriction
Set region restriction based on available contours.

settimeslicesliders
Set the time slides.

225

CHAPTER 15. UNIT IMPLEMENTATION

sliceslider Callback(v)
Callback for slider to set time frame in echo image stack.

smooththresedit Callback
Callback for edit box of smoothing (error) threshold.

smooththresslider Callback
Callback for slider to set smoothing (error) threshold.

startline Buttondown
Buttondown function for line indicating start of time period to fit.

startline Buttonup
Buttonup function for line indicating start of time period to fit.

startline Motion
Motion function for line indicating start of time period to fit.

P = t1firstguess1(S, minusti,INV, nbrofpixelsinslice)
Laling = max(abs(S),[],1); %1 x N.

P = t1firstguess1psir(S, minusti,INV, nbrofpixelsinslice)
Laling = max(abs(S),[],1); %1 x N.

P = t1fit(minusti, s, doinversion, psirtrue, nbrofunknowns, dollcorr)
Do t1 fit.

t2cpmgcheckbox Callback
Callback function for checkbox which enables T2-CPMG correction when using

MESE sequences (Multi-Echo Spin-Echo). /SB.

P = t2fit(minuste, s, nbrofunknowns)
First guess using truncated log-Least-squares fitting:

--.

timeedit Callback(v)
Callback for edit box of time frame.

timeslider Callback(v)
Callback for slider to set time frame in echo image stack.

226

15.10. ANALYSIS SUPERUNIT

updatefit
Update the fit graphically.

updateimage
Update view of image.

updatemap
Updates the map plot.

viewrestore Callback()
Restore the view callback.

[xlim, ylim] = zoom module(ax,f)
Added code for Zooming functionality in the map image in the T2star

module. 99% of the code is directly taken from JTu’s code in segment main.

zoomin Callback()
Zoom in callback.

zoomout Callback()
Zoom out callback.

15.10.2 Perfusion unit

The purpose of the Perfusion unit is to provide tools for myocardial perfu-
sion analysis, including rotation, registration and extracting curves of signal
intensity over time for quantification of upslopes to compare between rest
and stress image stacks.

Interactions

The Calculation superunit is used to do calculations of slice positions, inter-
sections and signal intensities by sector. The Find unit from Helper functions
is used to identify cine and scar image stacks.

Datastructure

The image information on which to operate is taken from the SET struct.
The field Perfusion is used for storing the final quantifications of upslope
comparisons.

227

CHAPTER 15. UNIT IMPLEMENTATION

Functions

ScrollWheelFcn(hObject, eventdata)
Scroll wheel function of GUI. Moves slider to toggle between slices.

bloodpoolcheckbox Callback(field)
Callback for checkbox toggling display of bloodpool curve and upslope.

[smoothed,t] = calcsmoothing(curves,tvec,tups,sigma)
Calculate smoothening (tups = time units per second).

calcupslopes
Calculate upslope curves and draw plots and bullseye.

close Callback
Callback for closing GUI.

contourcheckbox Callback
Callback for checkbox toggling display of segmentation contours.

contractsegmentationpushbutton Callback(field)
Create ROI’s defining contracted area of segmentation, to be used, if

available, instead of LV data.

curvepopupmenu Callback
Callback for changing sector to plot. Update both curve plots.

drawbullseye(ax,txth,perfvec)
Outline an AHA bullseye plot in axes with handle ax

Also updates report text with handle txth.

drawimages(field)
Do an update of all image axes.

drawlongaxisimage(zslices)
Update axis containing longaxis image, if available.

export
Export data to clipboard.

figure1 KeyPressFcn(hObject, eventdata)
Keypress functions for GUI.

228

15.10. ANALYSIS SUPERUNIT

generatepushbutton Callback
Callback to generate new aligned perfusion image stacks containing

timeframes between user defined start and end points.

stricell = getahastring
Return cell containing strings of segment names from AHA 17 segment model.

result = getbloodpoolcurve(no)
Calculate signal intensity curve of bloodpool.

[endox,endoy,epix,epiy] = getroisegmentation(no)
Get myocardium segmentation from ROI generated by contraction function.

init
Initiate GUI.

initimageaxis(field)
Initiate image axis with images from current stack.

maxslope = initplot(field,ahamat)
Initiate plots of curves.

roth = initrotatehandle(h,field,midpoint)
Draw handle used for rotation of image.

initsliceslider(zsz)
Initiate slider for toggling between slices in display.

inittimebar(field,analysed)
Initiate timebar axis for image specified by input parameter ’field’.

nextpushbutton Callback(field)
Callback for next frame pushbutton for image specified by input

parameter ’field’.

playalltogglebutton Callback(hObject, ˜)
Callback for toggle button playing rest and stress image stacks in a

synchronized manner where they reach their end timeframes simultaneously.

playtogglebutton Callback(hObject,˜,field)
Callback for play togglebutton for image specified by input

parameter ’field’.

229

CHAPTER 15. UNIT IMPLEMENTATION

prevpushbutton Callback(field)
Callback for previous frame pushbutton for image specified by input

parameter ’field’.

rawalignedpanel SelectionChangeFcn(hObject,eventdata,handles)
Selection change function for raw/aligned radiobutton panel.

Currently not implemented.

rotatecheckbox Callback
Callback for checkbox toggling rotation mode.

rotatehandle ButtonUpFcn(hObject, ˜, rotobj, midpoint, field)
Buttonup function for handle used to rotate image specified by input

parameter ’field’. Sets sector rotation and dectivates motion function.

rotatehandle Buttondown(hObject,˜,midpoint,field)
Buttondown function for handle used to rotate image specified by input

parameter ’field’. Activates motion function.

rotatehandle MotionFcn(hObject, ˜, rotobj, midpoint, field)
Motion function for handle used to rotate image specified by input

parameter ’field’. Dragging rotates image.

settimeframe(tag,tf,field)
Sets current/start/end timeframe for image stack specified by input

parameter ’field’.

sliceslider Callback
Callback of slider for toggling between slices in display.

smoothslider Callback
Callback of slider for changing smoothening factor. Recalculates upslopes.

timebar ButtonDownFcn(hObject, ˜, field)
Buttondown function for graphical timebar object of image specified

by input parameter ’field’. Activates dragging of timebars.

timebaraxes ButtonDownFcn(hObject, ˜, field)
Buttondown function for timebar axes of image specified by input

parameter ’field’. Changes current timeframe to the one closest to

position of clicked point.

230

15.10. ANALYSIS SUPERUNIT

timebaraxes ButtonUpFcn(hObject, ˜)
Buttonup function for timebar axes of image specified by input

parameter ’field’. Deactivates dragging of timebar.

timebaraxes MotionFcn(hObject, ˜, tbobj, no, field)
Mouse motion function for timebar axes of image specified by input

parameter ’field’. Used for dragging timebars to change current

timeframe or start/end points of timeframes in which to align images.

setstr = timestripset(setstr,tsz,t0,t1)
From a SET struct that has been stripped of some timeframes, removes

information specific to discarded timeframes.

updateplot(field)
Update plot of upslopes from image specified by ’field’ argument.

updaterotatehandle(midpoint,ang,h)
Update rotation handle specified by handle ’h’ from input arguments.

updatetimebar(h,no)
Update timebar axis specified by handle ’h’ from input arguments.

15.10.3 Strain unit

The Strain unit allows to calculate strain from velocity encoded phase con-
trast images.

Interactions

The function interacts with the Helper function unit and the Calc unit.

Datastructure

The module uses an own data structure in the field SET.Strain.

Functions

[timestepapex timestepapicalr timestepapicall timestepmidr timestep-
midl timestepbasr timestepbasl] = ...

calcmean(segmentindex,data)
calculate all segments meanvalue at every timestep

varible data is the parameter to calculate the mean over.

231

CHAPTER 15. UNIT IMPLEMENTATION

addicon helper(callback,tooltip,cdata,tag,separator)
Helper function to add an icon.

[P,pos] = addlocal helper(P,pos,arclen,localangles,radx,rady,shearx,sheary,outx,outy,xind,yind,l)
Helper function to add local basis functions.

[xnew,ynew] = anatomical2straincoords(x,y)
Convert from anatimical coordinates to strain coordinates.

anatomicalcorrectionpoint Buttonup
This is called on mouse up.

anatomicalcorrectionpoint Motion
This function is called when user moves the point.

anatomicalcorrectionpoints Buttondown
Called when click on correction point in anatomical image.

l = arclength(x,y)
Returns arclength of a curve.

[p1,p2,gm] = avpointsfinderhelper(dc)
Finds two peaks p1,p2 of a signal dc. gm is a goodness measure.

bullseye Callback
Plots bullseys plot of strain data.

[alpha,arclen] = calcalpha(no,centerx,centery)
Calculates the localangle for boundary node

x,y is boundary points

alpha is angle between normal and x axis.

arclen is arclength in longaxis direction.

calcandview Callback
Calculate strain in one long-axis image and open the strain gui.

inside = calcinside(no,inside,x,y)
Calculates which points are inside of centerline.

raddist = calcraddist(x,y,centerx,centery)
Calculates radialdistance to node points x,y given the

centerline centerx,centery.

232

15.10. ANALYSIS SUPERUNIT

[centerx,centery,inside] = centerline(x,y)
Calculates center line and returns wich points

x,y is contour.

clearall Callback
Clear all strain data for current image stack.

clearandcalculate Callback
Callback to re-initialize mesh.

closestrain Callback
close the strain gui.

index = contourindex2node(no,x,y)
Find connection between points on contour and boundary points.

index is length contour.

correctionpoint Buttonup
This is called on mouse up.

correctionpoint Motion
This function is called when user moves the point.

correctionpointbuttonuphelper(x,y)
Helper function to correctionpoint// Buttonup and

anatomicalcorrectionpoint/ Buttonup. x,y are assumd to be in strain

coordinates.

correctionpoints Buttondown
Called when someone clicks on a point on strain image.

correctionpointsbuttondownhelper(x,y,motionfcn,upfcn)
Helper function for buttondown for correction points.

ok = errorchecking(no)
Error check before calculate strain. Checks for existance of segmentation,

and if not try to import segmentation from cine images.

exportlongaxis Callback
export strain data from one long-axis projection to clipboard.

233

CHAPTER 15. UNIT IMPLEMENTATION

exportstrain Callback
Read in strain from files in a folder and export them to clipboard.

exporttocine Callback
Written by Einar Heiberg

Export strain segmentation to SSFP image.

apex = findapex(x,y,pmin,pmax)
Find apex of the heart.

[pmin,pmax] = findavpoints(x,y)
Rewritten by Einar Heiberg, insired by old code by Helen Soneson

Find max curvature, max "curvature" is at AV-plane.

ind = findcine(no)
Helper function to find corresponding cine image.

[minrange,maxrange] = findrange(colorval)
Helper function to find the range for colordata, uses checkboxes also in

GUI.

[x,y] = getanatomicalcontour(frame)
Converts the strain contour to an anatomical contour so that it can be

plotted on the anatomical image. This code is heavily inspired by

importsegmentation in segment main.

outframe = getanatomicalframe(frame)
Returns timeframe in anatomical image that corresponds to frame.

frame is typical current time frame of strain image.

[xofs,yofs,fx,fy] = getconversionfactors
Get conversion factors between strain coordinate system and anatomical

system.

colorval = getparameterdata
Returns the parameter data that should be plotted.

l = getpointspos(n)
Distribute the points evenly.

234

15.10. ANALYSIS SUPERUNIT

[radstrain,longstrain,totstrain] = getsectors(strainno)
Get strain in 17 sector format.

graph Callback
plots strain over time from one long-axis projection.

importfromcine Callback
Written by Einar Heiberg

Import segmentation from SSFP image.

initgui(no)
Initiates and open the strain GUI.

initialize(no)
This function initializes the mesh using data from SET(no).EndoX.

[pp,ee,tt] = initializemesh(x,y)
Initializes mesh.

x and y are the curve of the myocardium. Uses initmesh in PDE toolbox.

keypressed(fignum,evnt)
Keypress callback.

laplaceradiobutton Callback
User clicked laplace radiobutton.

multiplebullseye Callback
Plut multiple bullseyes from clipboard.

navierradiobutton Callback
User clicked Navier radiobutton.

nedit Callback
Edit number of points (n).

nslider Callback
User changes the nslider.

nyedit Callback
User made changes in edit box.

235

CHAPTER 15. UNIT IMPLEMENTATION

nyslider Callback
User drags the nyslider.

[u,c] = optimizingcoeff(no,vx,vy,A,c,K,H)
Optimze the coefficients, run an optimization scheme.

vx is velocity field

vy is velocity field

c is coefficent matrix.

plothelper(type)
Helper function to plot parameter. Uses the information in the

handles.parameterlistbox.

plotmax Callback
plot the strain value from the time frame with abs(maximum strain) over time.

plotmin Callback
plot the strain value from the time frame with abs(maximum strain) over time.

polarplotaha(strainvalues,ax)
plot the aha model in the polar plot.

dist = projection(p,plane)
Calculates distance d to plane given by p1,p2

Calculate nhat (normal of plane).

propagatendoseg(no)
Propagate node points.

recursekeypressfcn(h,fcn)
Helper function to create callbacks to keypressed function.

resetstrain(no)
Clear strain data with new format for the internal representation.

retrack(no)
Recalculates the mesh taking corrections into account.

retrack Callback
This is called after manual corrections using both local and global effect.

236

15.10. ANALYSIS SUPERUNIT

v = samplevelocity(vx,vy,px,py,A,c)
Sample velocity data, v is vector with sampled velocity data. Size is

(2*nnodes) x nframes.

segmentindex = section(no)
Divide the long-axis of the heart into 7 segments according to AHAs

17-segment model

segmentindex: contain the index for the 7 different segments:

2CH: 1.basal anterior 2. mid anterior 3.apical anterior

4.apical inferior 5.mid inferior 6. basal inferior 7.apex

3CH: 1.basal anteroseptal 2.mid anteroseptal 3.apical septal

4.apical lateral 5.mid inferolateral 6.basal inferolateral 7.apex

4CH: 1.basal inferoseptal 2.mid inferoseptal 3.apical septal

4.apical lateral 5.mid anterolateral 6.basal anterolateral 7.apex

segmentindex is a cellarray with length 7.

Written by Helen Soneson 2008-09-29

Modified by Shruti and Einar after change in strain representation

Modified by Einar to use dicom coordinates.

[Dx,Dy,M] = setupdiffoperator(no)
This function is inspired by pdegrad, but returns the operator

matrix instead of actually calculating the gradient.

G = setupmappingfunction(no)
G is mapping from boundary functions to the entire domain. The size of

G is (2*nodes x 2*boundarynodes).

L = setupmaterialoperator(no, Dx, Dy, M)
We will use the laplace operator for a start.

Calculate second derivative operator.

Size of Dxx is (nnodes x nnodes).

P = setupnewboundaryfunctionsglobal(no)
This is the basis function used in the strain paper 2012-08-14.

H = setuptemporaloperator(no)
H is dtt operator. The size is (nframes-1) x (nframes-1).

sigmaedit Callback
Edit box for sigma.

237

CHAPTER 15. UNIT IMPLEMENTATION

sigmaslider Callback
Callback for the sigma slider.

[xnew,ynew] = strain2anatomicalcoords(x,y)
Converts from coordinates in strain coordinate system to anatomical

coordinate system.

[Srad,Slong,Sshear,Stot] = straintensor(no,dx,dy)
Calculates and decomposes the strain tensor to radial, long and shear

strain.

timeslider Callback
Called when user changes timeslider.

trackandcalculateglobal(no)
Perform tracking and calculate strain.

trackandcalculateglobaleval(no)
Track without using user interface.

trackmanualandcalculate()
Recalculates the mesh taking corrections into account.

translatecontour Callback(direction)
Callback to translate anatomical contour.

translatestraincontour Callback(direction)
Translate the strain contour callback.

translatestraincontourhelper(no,dx,dy)
Helper function to translate strain contour.

undomanualcorrections Callback
Undo manual corrections. Currently not implemented returns messagebox.

viewlistbox Callback
Called when user clicks in view listbox. Currently not fully implemented

and not called.

viewlocal
Visualize the local basis regionality.

238

15.10. ANALYSIS SUPERUNIT

viewnext Callback
User has clicked on next button. Move to next time frame.

viewparameter Callback
Called when user adjusts colorscale or setting gui.

viewplay Callback
play a movie of strain over time.

viewplaypushbutton Callback
Start to play from pushbutton.

viewprev Callback
move to previus time frame.

viewtrackupdate
Update the tracking graphically.

15.10.4 Strain tagging unit

The Strain tagging unit allows to calculate strain from tagging images.

Interactions

The function interacts with the Helper function unit and the Calc unit.

Datastructure

The module uses an own data structure in the field SET.StrainTagging.

Functions

analyse Callback
Do strain analysis.

calcpoints
Calculate positions of points used for strain calculation.

close Callback
Close straintagging GUI.

239

CHAPTER 15. UNIT IMPLEMENTATION

hideanatomicalcontour Callback
Hide segmentation contours in anatomical image.

hidetaggingcontour Callback
Hide segmentation contours in tagging image.

hidetagginggrid Callback
Hide grid in tagging image.

hidetaggingpoints Callback
Hide points in tagging image.

importfromcine Callback
Import segmentation to tagging image from cine stack.

init
Initialize the GUI.

inittimebar
Initiate timebar axis.

makeslicemat
From the current slice, make .mat file used by the executable.

makevtk
Save tracking grid and points to .vtk files used by the executable.

next Callback
Callback for changing to next time frame.

play Callback
Callback for play togglebutton.

prev Callback
Callback for changing to previous time frame.

sectorrotation Callback
Show handle for sector rotation.

sectorrotationslider Callback
Rotate sector.

240

15.10. ANALYSIS SUPERUNIT

sliceslider Callback
Callback for slider to toggle slice.

timebar ButtonDownFcn(hObject, ˜)
Buttondown function for graphical timebar object. Activates dragging of timebars.

timebaraxes ButtonDownFcn(hObject, ˜)
Buttondown function for timebar axes. Changes current timeframe to the

one closest to position of clicked point.

timebaraxes ButtonUpFcn(hObject, ˜)
Buttonup function for timebar axes of image specified by input

parameter ’field’. Deactivates dragging of timebar.

timebaraxes MotionFcn(˜, ˜, tbobj, no)
Mouse motion function for timebar axes of image specified by input

parameter ’field’. Used for dragging timebars to change current

timeframe or start/end points of timeframes in which to align images.

translatecontour Callback(direction)
Translate segmentation contours in all image stack views.

translategrid Callback(direction)
Translate grid in tagging image.

updateimages
Update all image stacks and also timebar.

updateplot
Plot strain in axes.

updatetimebar
Update timebar axis.

viewparameter Callback
Callback from listbox selection of parameter to plot.

15.10.5 MPR unit

The purpose of the MPR unit is to do multiplanar reconstructions of image
stacks

241

CHAPTER 15. UNIT IMPLEMENTATION

Interactions

Interactions are negligible.

Datastructure

The image information on which to operate is taken from the SET struct and
the stack number is taken from NO variable.

Functions

buttonup
Called upon release of mouse button after center point has been pressed

down.

center buttondown
Called when center point is pressed down, sets motion and buttonup

function.

center motion
Called upon mouse motion after center point has been pressed down.

done
Resample the complete volume.

init
Initiate GUI.

newcut
Callback for making a new cut.

p1 buttondown
Called when point p1 is pressed down, sets motion and buttonup

function.

p1 motion
Called upon mouse motion after point p1 has been pressed down.

p2 buttondown
Called when point p1 is pressed down, sets motion and buttonup

function.

242

15.10. ANALYSIS SUPERUNIT

p2 motion
Called upon mouse motion after point p2 has been pressed down.

play
Called when start play.

prevcut
Callback for changing to previous cut.

z = resample cut
Do the resampling based on cut selected by user.

z = resample slice
Calculates the slice, i.e left image panel.

[z,impos] = resampler(im,region,sz,no)
Calculate new image coordinates for resampled image.

reset line(dummy)
Line reset callback.

resolutionedit
Callback for when resolution is changed by user.

sliceslider
Callback when slider is used to change slice.

slicethicknessedit
Callback for when slice thickness is changed by user.

update all
Update everything on display.

update line
Update line upon changed line specifications.

update main(dummy)
Update main display.

update preview
Update preview of the reformated image.

243

CHAPTER 15. UNIT IMPLEMENTATION

15.10.6 Fusion unit

The purpose of the Fusion unit is to do manual fusion of two image stacks,
one anatomical and one functional.

Interactions

Interactions are negligible.

Datastructure

The image information on which to operate is taken from the SET struct and
the stack number is taken from NO variable.

Functions

anatomiccolor Callback
change colormap in the anatomical image stack.

map = calcintensitymapping(contrast,brightness)
calculating the colormap based on the input contrast and brightness.

calcrotationmatrix
update the functional and fusion images after flip, rotation or translation.

close Callback
close the Fusion GUI.

contrast Callback(movement,imagestack)
update the contrast and brightness in the anatomical or funcitonal image stack.

doflip(flipparameter)
flip the functional image.

done Callback
add the Fusion image stack to the Segment main gui.

The Fusion image stack is built up by the functioal image and

the transformed segmentation from the anatomical image.

drawanatomic
draw the anatomical image stack.

244

15.10. ANALYSIS SUPERUNIT

drawfunctional
draw the funcitonal image stack.

drawfusion
draw the fusion image stack.

res = findtwo2(curve,point)
find the two closest points in the input variable curve, to the point in

the input variable point.

flip Callback(flipparameter)
flip the functional image and update the new images.

functionalcolor Callback
change colormap in the functional image stack.

init Callback
starts the fusion gui.

keypressed(fignum,evnt)
move in the image slices with the keyboard arrows.

move Callback(button)
read in translation and rotation.

plotval = plotvalues(position,myocardium,zvalues,t)
find and return the endo- and epivalues to plot.

resamplefunction(param1,param2,param3)
resample the functional image to the same size as the anatomical image

also rotate and translate the functional image.

reset Callback
reset to the start position of the functional image.

resetcontrast Callback
reset the contrast and brightness to the start values.

savedefault Callback
save the current translation, rotation, flip and colormap in a default .mat-file.

245

CHAPTER 15. UNIT IMPLEMENTATION

plotval = segmentation(set1,set2,nr,parameter,t)
return the endocardial segmentation in the anatomical and functional image

stacks.

setdefault Callback
apply the default .mat-file (including settings for translation, rotation,

flip and colormap) to the current functional image stack.

settransparent(transparentparameter)
set the intensity balance between the anatomical and functional images in the fusion image stack.

transparent Callback(movement)
update the intensity balance between the anatomical and functional images in the fusion image stack.

undo Callback
undo the last translation or rotation.

update(imagestack)
update all image stacks after left mouse click in the anatomical or

functional image stacks.

updateanatomic
update the anatomic image stack.

updatefunctional
update the functional image stack.

updatefusion
update the fusion image stack.

updatesegmentation
update the segmentation and lines in all images.

15.10.7 General segmentation unit

The purpose of the general segmentation tool is to be able to do semi-
automatic segmentation of general objects and not only left ventricle and
right ventricle. The unit is based on using a level set method and the user
can change many inputs to the levelset to get a good segmentation.

Interactions

Interactions are negligible.

246

15.10. ANALYSIS SUPERUNIT

Datastructure

Relevant data for general segmentation is stored in the field .LevelSet in
both the SET variable and the DATA variable.

The most important subfield of SET.LevelSet are:

• BW: The resulting segmentation stored as 0 or 1 (black or white)

• Man: The manual segmentation

• Object: Stores information related to dividing the segmentation into
seperate objects

• Speed: Stores information related to the speed image used in the level
set segmentation

• Segmentation: Stores information related to the parameters in the
level set segmentation

• View: Stores information related to the graphical viewing of the seg-
mentation

• Pen: Stores information related to the pen used for manual segmenta-
tion

• Prototype: Stores information related to prototype based segmenta-
tion using level set

• RegionGrowing: Stores information related to region growing segmen-
tation using level set

The most important subfields of DATA.LevelSet are:

• BackupBWInd: Stores the indices of SET.LevelSet.BW from previous
segmentation iteration to be able to go back to previous iteration

• BackupManAddInd: Stores the positive indices of SET.LevelSet.Man
from previous segmentation iteration to be able to go back to previous
iteration

• BackupManRemoveInd: Stores the negative indices of SET.LevelSet.Man
from previous segmentation iteration to be able to go back to previous
iteration

• SpeedIM: Stores the speed image calculated from SET.LevelSet.Speed

• GradientPart: Stores the gradient calculated from SET.IM

• Protototype: Stores information related to prototype based segmen-
tation which does not need to be saved in SET.LevelSet.Prototype

247

CHAPTER 15. UNIT IMPLEMENTATION

Functions

all functions relevant for the unit is implemented in levelset.m.

248

16 Module Implementation

16.1 Bruker module

The documentation for the usage of the Bruker Module is given in Segment
User Manual.

16.1.1 Interactions

The module interacts with the DATA.Preview field in the exact same way as
the standard file loader does.

16.1.2 Datastructure

It uses the structure in DATA.Preview to store information and pass on to
code to set up SET structure.

16.1.3 Functions

The documentation for the usage of the Bruker Module is given in Segment
User Manual.

16.2 MIP module

MIP stands for maximum intensity projection. The MIP module is still a
work in progress module.

16.2.1 Interactions

No interactions besides usage of SET and NO to retreive image data.

16.2.2 Datastructure

Will be documented when fully functional.

16.2.3 Functions

Will be documented when fully functional.

249

CHAPTER 16. MODULE IMPLEMENTATION

16.3 Corelab module

The purpose of the Corelab Module is to implement support for working with
Segment in a Corelab setting.

16.3.1 Interactions

The interactions are performed only with Medviso AB corelab database
(Transfer) and local file system for downloaded image files.

16.3.2 Datastructure

Not applicable.

16.3.3 Functions

For internal use only and no public documentation will be made available.

250

17 Testing Segment

To ensure highest quality of Segment as possible, a complete software testing
system has been implemented. The test procedures include both system
integration tests as well as unit implementation tests. The automated testing
system produces a comprehensive test report (testreport.tex) including
found bugs in Segment. A summary for each of all tests that have been
performed for Segment is stored in a test record file (testrecord.tex).

17.1 Testing functionality

The test functionality is implemented in the file test.m. It outputs the de-
tails of the testing result to the files testresultdoc.tex, testrecordtable.tex
and testsummarydoc.tex that are used when the test report and test
record are generated. For an exact list of the included tests, see the latest
available version of the test report. For each test performed a detailed list of
tested functions are produced.

17.2 How to write testcases in maketest.m

Implementing a testcase consist of two parts, writing the testfunction and
adding the testfunction to the list of test to perform.

17.2.1 Writing test function

A testfunction is written as

function result=testfunction

result=[]; %commands to test

result=subtest(result,passcriteria,subtestdescription)

%more commands to test

result=subtest(result,another pass criteria, another subtestdescription)

In this function passcriteria is a string of tests that can be evaluated as either
true or false by an eval in the function subtest. The subtestdescription is a
string describing the commands tested.

251

CHAPTER 17. TESTING SEGMENT

17.2.2 Add test function to list of tests

To add test functions to the testlist it should be grouped either into one of
the already available test case if clauses in the function dotestscript, for ex-
ample added into the loaddicomfiles caluse, or a new test case clause should
be added. In the test case if clause the test function is added to the testlist
by the following commands

testlist = addtest(testlist,...shortdescirption,...

longertestdescritption,... boolean,@testfunction);

Where short description and longer description describes the purpose of the
testfunction, the boolena is either true or false, true if all image stacks should
be closed before starting test oterwise false and testfunction is the name of
the function to test. If a new test case is added it will have to be added in
the function testcaseselector as well so that it is possible to select the test
case when running maketest.

17.3 Testing broken callbacks

Testing broken callbacks is tested by the function validatecallbacks. Called
with one input argument it tests the .fig file in the input argument and
prints result in the standard output. If called with no input arguments,
then the entire Segment project is tested and a report is written to the file
callbacksdoc.tex which is used to produce the test report. The test script
assumes that the first argument in a callback string is a sub function in the
function name in the callback string (if applicable). The script tests uimenu,
uicontextmenu, and uicontrol objects that has a callback string defined.
To parse out sub functions of a function the function document.m is used.

252

18 Compiling Segment

18.1 Introduction

Compiling Segment is a complex process since there are many depending files
that need to be included. Therefore, a make script makeit.m was created.
This script contains a list of all files required in the entire Segment project.
With the addition of new Segment products, the script was refactored into
an object oriented approach using a hierarchy of compilation script classes.
This class hierarchy is described in Chapter 11. When making new files it is
therefore necessary to include the new files in the compilation class definition
files for softwares in which the file is to be used. ’Compilation’ is in this
chapter used in its widest sense, including not only making a executable
standalone application, but also the creation of a .zip file for distributing
Segment in a source code format, or generating all documentation files. A
major part of the script is the control of which files should be included and
to ensure that the files are properly protected when distributing as a source
code format.

18.2 Running the compilation script

This section is generic for all softwares by Medviso.

The first thing one need to do before compiling Segment is to update the
file changelog.m with the current version number (i.e release number). This
information is used when creating the output file. The script can run in four
modes and upon running internaltools.makeit.m a GUI prompts the user
to select one.

• Make Segment standalone, make a standalone research edition exe-
cutable suitable for installation.

• Make Segment CMR standalone, make a standalone clinical MR edition
executable.

• Make Segment CT standalone, make a standalone clinical CT edition
executable.

• Make CVQ standalone, custom layout of Segment executable.

253

CHAPTER 18. COMPILING SEGMENT

• Make RVQ standalone, software adapted for kidney studies executable.

• Make Matlab stubbed modules, create a .zip file of source code for
release to the public.

• Make Matlab all modules but protected, create a .zip file of source code
for trusted users only.

• Make Segment standalone with 4D-flow, make a standalone of Segment
containing the 4D-flow module, for trusted users only.

Note: You need to have Winzip self extractor installed on your computer to
be able to run the standalone option. The GUI also enables the user to select
whether to run the test script before compiling, making documentation and
uploading the final compiled file to FTP.

It is necessary also to check that there are no critical tickets before compiling.
In some cases the combination of testing and compilation in one session
fails. To remedy this problem the function internaltools.slowcompile

was introduced. Call this function with either segment or segmentcmr.

18.3 Configuring

Settings in the files are done in the section entitled
%—————
%%% Settings %%%
%—————
Below you find a list of items that can be configured.

• Toolboxes used. You need to manually enter all required toolboxes.
This is neccessary since the compiler script excludes are toolboxes but
the specifically indicated toolboxes. This is done in order to minimize
the size of the compiled project. Large projects will take long time
to start since they need to be virus scanned before starting, and the
size also affects the real-time unpacking. To help to locate the required
toolboxes, use checktoolboxdepency.m.

• M-files in the project. You need to add normally used m-files here. It
is not enough to only add it to the SVN tree, you need to add it to
makeit.m. Failure to add a file to makeit.m will most probably not
affect the standalone file, but it will affect when compiling to a source
code format. See also under Section Modules below.

254

18.4. MULTI PLATFORM SUPPORT

• Internal M-files. Here files that are only required for the maintenance
of the entire software project are listed. The only reason to list them
here is so that they will be included in the total project count when
counting the total number of files, and lines in Segment project.

• Fig-files. Here you list all required .fig-files. Failure to include a file here
will affect both the standalone version as well as the Matlab version.

• Mat-files. Here you list all required .mat-files. Failure to include a
file here will affect both the standalone version as well as the Matlab
version.

• Plugins. Here you list all plugins that should be available in the stan-
dalone version. You need only to add the main files (i.e files named
plugin xxx.m). Depending files is handled automatically since each
plugin, should respond which depending files. For more information,
see wiki:plugins.

• C-files. Here you list all required .c-files (i.e MEX-files). The files are
assumed to be compiled for each target platform. See also makemex.m.

• Files to protect. Here you list all files that should be protected, and
only be included in the source code format as precompiled p-code.

• Modules to include. Each time you add a new m-file to the Segment
project you need to add it in makeit.m either in the sections above, or
or as a module if the file is only used within a specific module. The
difference between adding it as a general m-file or as a part of a module
is readibility to enhance the understanding which m-file belongs to
which modules. Generally modules should be the same as the modules
listed in the file getmodule.m. Making a new module should be fairly
straight-forward by copy and past in makeit.m.

18.4 Multi platform support

Currently Segment does not support multi platform except when running
from Matlab. Therefore, compiling to standalone does only work for the
Windows platform. Things to fix before the compilation is supported for
other platforms are:

• Changes not to generate a self extracting executable.

• Create and upload new MCR Installer package for each target platform.

255

CHAPTER 18. COMPILING SEGMENT

Note that there are also features that are not supported for other platforms
than Windows even when running under Matlab, one such feature is the
PACS connection and the Segment server.

18.5 Compiling documentation

A script to update the entire documentation base is included. Note that you
need to have MikTex installed and properly configured prior to running this
script. When run from the main compilation script, then the manuals are
automatically uploaded to Medviso homepage. The user or process specifies
which software to document and the script creates the following documents
(provided that they are available) for that software:

• Instructions for use. The instructions for use are rebuilt with current
data and version number taken from changelog.m. Depending on set-
tings, the bibliography is also updated.

• Reference manual.

• Installation manual.

• Sectra PACS manual.

• Database manual.

• Technical manual. Function definitions and help texts are extracted
from a set of m-files. Note that therefore it is very important that the
coding standard is closely followed on how to make help texts about
functions. Also all helper functions starting with the name my* are
automatically documented.

• Test report. First validate callbacks are run to check if all callbacks are
correct, then the last result of maketest are used to build a test report.

• Test record.

• Release record.

18.6 Sectra Plugin compilation

You need to compile the Sectra Plugin in Microsoft Visual Studio 2010 Pro-
fessional. This version is bought by Medviso and disc are availble in main
office.

256

18.6. SECTRA PLUGIN COMPILATION

To download the environment click in CSN (in Sectra web), see details in
wiki:SectraPlugin for log in details. Click on Download, CAI SDK and
take the latest release.

You start Microsoft Visual Studio by clicking on sectraplugin.sln. To
compile, click on Build, Build solution. In the box, select ’Release’ and not
’Debug’. Select platform Win32 or Win64. The the compilation is finished
then the sectraplugin.dll is found in the Release folder. If you compiled 64
bit version then it is found in the x64/Release folder. Check in the version
in the system as either sectraplugin32.dll or sectraplugin64.dll.

257

19 How to Create Own Plug-ins

The easiest method of how to learn to make own plug-ins is to study the
example plugin template.m. Writing own plug-ins is a great way of spread-
ing your algorithms to users all over the world and also to contribute to the
Segment project. For more details on how to contribute, or learn more about
interacting with other users, please see Chapter 20.

A plugin file must have a name beginning with plugin *.m. Note that the
plugin may of course call other functions that can reside anywhere on the
Matlab path. When Segment is started the current folder is scanned for
functions with this pattern. Matching functions are called with the argument
getname and a string with the name that should appear in Segment menu is
expected.

Currently there are two other plugins that are shipped with the standard
Segment edition:

• plugin imageloader.m. Plugin to load non DICOM images into Seg-
ment. This plugin can load for instance .jpg, .bmp, .tif, .png files
into Segment. This plugin gives some elementary details on the internal
data structure.

• plugin calibrate.m. Plugin to calibrate image resolution. This plu-
gin gives some hints on using own GUI’s and also some details about
the internal data structure in Segment.

• plugin template.m. Template plugin, simple template for creating
plugins.

• plugin summarize.m. Plugin to summarize results from multiple .mat

files. This function is useful to read when creating own export scripts.

• plugin phaseflow.m. Plugin to enable to make flow measurement
when there is only phase images available.

For further documentation of the two first plug-ins, please see the Segment
User Manual.

259

20 Segment User Community

As a result of the growing interest in Segment and as a response of numerous
requests Medviso AB has started to form a user community web place. This
initiative will be enlarged significantly as the members of the community
both requests more and also expands the community. It is worth noting that
in the user survey spring 2010, out of 169 answers 147 answered that they
would follow the user community, and 45 answered that they would follow it
often.

A preliminary start page of the user community can be found on the following
Facebook page http://www.facebook.com/pages/Segment/119840021370285.

It is the aim to be able to provide the following activities on the user com-
munity pages:

1. Participate in discussion forums. Currently forums for Developers dis-
cussion and tips and tricks, Feature requests, Segment and Mac.

2. Contribute and share own plug-ins. This feature is currently not avail-
able. If you have plug-ins that you want to share, please email them
to support@medviso.com and we will manually upload the plug-in.
Currently writing own plug-ins to Segment is documented in the Seg-
ment Technical Manual.

3. FAQ sections. Currently we are gathering FAQ in our support program.
All (or almost all) support request will be made available in a searchable
data base. Exceptions on when support requests are not included when
the user request so in conjunction with classified projects.

Staff from Medviso AB will follow the user community page closely and mon-
itor any incoming questions or uprising discussions.

If you have any ideas or suggestions on how we should improve the user
community, please send us an email to support@medviso.com.

261

Bibliography

[1] E. Heiberg, J. Sjogren, M. Ugander, M. Carlsson, H. Engblom, and
H. Arheden. Design and validation of Segment–freely available software
for cardiovascular image analysis. BMC Med Imaging, 10:1, 2010.

[2] E. Heiberg. Automated Feature Detection in Multidimensional Im-
ages. PhD thesis, 91-85297-10-0. Linkoping universitet, Department
of Biomedical Engineering, 2004.

[3] E. Heiberg, L. Wigstrom, M. Carlsson, A. F. Bolger, and M. Karlsson.
Time Resolved Three-dimensional Automated Segmentation of the Left
Ventricle. In IEEE Computers in Cardiology 2005, volume 32, pages
599–602, Lyon, France, 2005.

[4] H. Engblom, M. B. Carlsson, E. Hedstrom, E. Heiberg, M. Ugander,
G. S. Wagner, and H. Arheden. The endocardial extent of reperfused
first-time myocardial infarction is more predictive of pathologic Q waves
than is infarct transmurality: a magnetic resonance imaging study. Clin
Physiol Funct Imaging, 27(2):101–8, 2007.

[5] S. Bidhult, G. Kantasis, A. H. Aletras, H. Arheden, E. Heiberg, and
E. Hedstrom. Validation of T1 and T2 algorithms for quantitative MRI:
performance by a vendor-independent software. BMC Med Imaging,
16(1):46, 2016. Bidhult, Sebastian Kantasis, George Aletras, Anthony H
Arheden, Hakan Heiberg, Einar Hedstrom, Erik England BMC medical
imaging BMC Med Imaging. 2016 Aug 8;16(1):46. doi: 10.1186/s12880-
016-0148-6.

[6] S. Bidhult, C. G. Xanthis, L. L. Liljekvist, G. Greil, E. Nagel, A. H.
Aletras, E. Heiberg, and E. Hedstrom. Validation of a new t2* algorithm

263

BIBLIOGRAPHY

and its uncertainty value for cardiac and liver iron load determination
from MRI magnitude images. Magn Reson Med, 75(4):1717–29, 2016.

[7] K. Dorniak, E. Heiberg, M. Hellmann, D. Rawicz-Zegrzda, M. Wesier-
ska, R. Galaska, A. Sabisz, E. Szurowska, M. Dudziak, and E. Hedstrom.
Required temporal resolution for accurate thoracic aortic pulse wave
velocity measurements by phase-contrast magnetic resonance imaging
and comparison with clinical standard applanation tonometry. BMC
Cardiovasc Disord, 16(1):110, 2016. Dorniak, Karolina Heiberg, Einar
Hellmann, Marcin Rawicz-Zegrzda, Dorota Wesierska, Maria Galaska,
Rafal Sabisz, Agnieszka Szurowska, Edyta Dudziak, Maria Hedstrom,
Erik England BMC cardiovascular disorders BMC Cardiovasc Disord.
2016 May 26;16(1):110. doi: 10.1186/s12872-016-0292-5.

[8] J. Tufvesson, E. Hedstrom, K. Steding-Ehrenborg, M. Carlsson,
H. Arheden, and E. Heiberg. Validation and development of a new
automatic algorithm for time resolved segmentation of the left ventricle
in magnetic resonance imaging. BioMed Research International, In press
2015.

[9] H. Soneson, J. F. Ubachs, M. Ugander, H. Arheden, and E. Heiberg. An
Improved Method for Automatic Segmentation of the Left Ventricle in
Myocardial Perfusion SPECT. J Nucl Med, 50(2):205–13, 2009.

[10] H. Soneson, F. Hedeer, C. Arevalo, M. Carlsson, H. Engblom, J. F.
Ubachs, H. Arheden, and E. Heiberg. Development and validation of a
new automatic algorithm for quantification of left ventricular volumes
and function in gated myocardial perfusion SPECT using cardiac mag-
netic resonance as reference standard. J Nucl Cardiol, 18(5):874–85,
2011.

[11] E. Heiberg, H. Engblom, J. Engvall, E. Hedstrom, M. Ugander, and
H. Arheden. Semi-automatic quantification of myocardial infarction
from delayed contrast enhanced magnetic resonance imaging. Scand
Cardiovasc J, 39(5):267–75, 2005.

[12] E. Heiberg, M. Ugander, H. Engblom, M. Gotberg, G. K. Olivecrona,
D. Erlinge, and H. Arheden. Automated quantification of myocardial
infarction from MR images by accounting for partial volume effects:
animal, phantom, and human study. Radiology, 246(2):581–8, 2008.

264

BIBLIOGRAPHY

[13] E. Heiberg, H. Engblom, M. Ugander, and H. Arheden. Automated
Calculation of Infarct Transmurality. In IEEE Computers in Cardiology,
pages 165–168, Durham, USA, 2007.

265

	Regulatory status
	Regulatory status
	Commercial usage of Segment
	Indications for use
	Investigational purposes

	License terms
	Acknowledgements
	Conventions and Abbreviations
	Typographic conventions
	Trademarks
	Abbreviations

	Document purpose
	Coding Conventions
	Naming functions
	Naming variables
	Name graphical handles
	Object oriented programming
	Packaging
	General coding conventions
	Units
	Graphical user interfaces
	Indentation and spacing
	Documenting code

	Coordinate Systems
	Introduction

	Running Segment from Matlab
	Overview of Segment
	Architectural Design
	List of superunits
	OTS software and SOUP elements
	OTS software
	SOUP elements

	Protected code sections
	Global variables as data communication

	Class Hierarchy Overview
	General class hierarchy
	Compilation class hierarchy

	DATA Object
	SET Variable
	Implementation Details
	Version handling
	Numeric representations
	Loading data and interpretation of DICOM tags
	Volume calculations
	Mass calculations
	Calculation of BSA
	Peak ejection/filling rate
	Wall thickness
	Calculation of regurgitant volumes and shunts
	Infarct size, extent and transmurality
	Number of SD from remote for Scar
	MR relaxometry calculations
	Pulse wave velocity
	Torsion
	Least squares circle fit
	Angular discontinuity detection

	Longaxis volumes

	Unit Implementation
	Main Segment superunit
	Draw superunit
	Calculation superunit
	Helper functions superunit
	Find unit
	Exist unit
	Input/Output unit
	myadjust.m
	mybrowser.m
	mycat.m
	mycopyfile.m
	mycountunique.m
	mydel.m
	mydir.m
	mydisp.m
	mydispexception.m
	myecgreader.m
	myexecutableext.m
	myfailed.m
	mygetcurrentpoint.m
	mygetedit.m
	mygetframe.m
	mygetlistbox.m
	mygetnumber.m
	mygetslider.m
	mygetvalue.m
	mygui.m
	myguide.m
	myicon.m
	myiconplaceholder.m
	mymaximize.m
	mymenu.m
	mymkdir.m
	mymovefile.m
	mymsgbox.m
	mynanmean.m
	mypoly2cw.m
	myrequirepc.m
	myset.m
	mystubfailed.m
	myuigetdir.m
	myuigetfile.m
	myuiputfile.m
	myurlread.m
	mywaitbarclose.m
	mywaitbarmainclose.m
	mywaitbarmainstart.m
	mywaitbarmainupdate.m
	mywaitbarstart.m
	mywaitbarupdate.m
	mywarning.m
	mywarningnoblock.m
	myworkoff.m
	myworkon.m

	Report superunit
	Report 3D unit
	Report Volume unit
	Report Radial Velocity unit
	Flow unit
	Report Slice unit
	Report Bullseye unit
	Pulse Wave Velocity unit
	Qp/Qs / Valve unit
	Unwrap unit
	Report Sheet unit
	Export unit

	Segmentation superunit
	Measurement unit
	Annotation point unit
	LV segmentation unit
	RV segmentation unit
	Contours unit
	Viability unit
	Myocardium at risk unit
	ROI analysis unit

	Resources superunit
	Help unit
	Preferences unit

	Tools superunit
	File superunit
	Open File unit
	Image file reader unit
	DICOM file write unit
	Database unit
	PACS unit
	Segment Server unit
	File menu unit
	Utility unit
	Sectra unit
	External PACS unit

	Analysis superunit
	Relaxometry unit
	Perfusion unit
	Strain unit
	Strain tagging unit
	MPR unit
	Fusion unit
	General segmentation unit

	Module Implementation
	Bruker module
	Interactions
	Datastructure
	Functions

	MIP module
	Interactions
	Datastructure
	Functions

	Corelab module
	Interactions
	Datastructure
	Functions

	Testing Segment
	Testing functionality
	How to write testcases in maketest.m
	Writing test function
	Add test function to list of tests

	Testing broken callbacks

	Compiling Segment
	Introduction
	Running the compilation script
	Configuring
	Multi platform support
	Compiling documentation
	Sectra Plugin compilation

	How to Create Own Plug-ins
	Segment User Community
	Bibliography

